Bài 2 trang 40 SGK Toán 11 tập 1 thuộc chương trình học Toán 11 Chân trời sáng tạo, tập trung vào việc rèn luyện kỹ năng giải bài toán liên quan đến hàm số và đồ thị hàm số. Bài tập này đòi hỏi học sinh phải nắm vững kiến thức về các loại hàm số, cách xác định tập xác định, tập giá trị và các tính chất của hàm số.
Tại giaitoan.edu.vn, chúng tôi cung cấp lời giải chi tiết, dễ hiểu cho Bài 2 trang 40 SGK Toán 11 tập 1, giúp học sinh hiểu rõ phương pháp giải và tự tin làm bài tập.
Giải các phương trình lượng giác sau:
Đề bài
Giải các phương trình lượng giác sau:
\(\begin{array}{l}a)\;\,cos(x + \frac{\pi }{3}) = \frac{{\sqrt 3 }}{2}\\b)\;\,cos4x = cos\frac{{5\pi }}{{12}}\\c)\;\,co{s^2}x = 1\end{array}\)
Phương pháp giải - Xem chi tiết
Phương trình \({\rm{cosx}} = m\),
Khi \(\left| m \right| \le 1\)sẽ tồn tại duy nhất \(\alpha \in \left[ {0;\pi } \right]\) thoả mãn \({\rm{cos}}\alpha = m\). Khi đó:
\({\rm{cosx}} = m \Leftrightarrow {\rm{cosx}} = {\rm{cos}}\alpha \) \( \Leftrightarrow \left[ \begin{array}{l}x = \alpha + k2\pi \\x = - \alpha + k2\pi \end{array} \right.\left( {k \in \mathbb{Z}} \right)\)
Lời giải chi tiết
\(\begin{array}{l}a)\;\,cos(x + \frac{\pi }{3}) = \frac{{\sqrt 3 }}{2}\\ \Leftrightarrow cos\left( {x + \frac{\pi }{3}} \right) = cos\frac{\pi }{6}\\ \Leftrightarrow \left[ \begin{array}{l}x + \frac{\pi }{3} = \frac{\pi }{6} + k2\pi \\x + \frac{\pi }{3} = -\frac{\pi }{6} + k2\pi \end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x = -\frac{\pi }{6} + k2\pi \\x = -\frac{\pi }{2} + k2\pi \end{array} \right.\left( {k \in \mathbb{Z}} \right)\end{array}\)
\(\begin{array}{l}b)\;\,cos4x = cos\frac{{5\pi }}{{12}}\\ \Leftrightarrow \left[ \begin{array}{l}4x = \frac{{5\pi }}{{12}} + k2\pi \\4x = -\frac{{5\pi }}{{12}} + k2\pi \end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x = \frac{{5\pi }}{{48}} + k\frac{\pi }{2}\\x = -\frac{{5\pi }}{{48}} + k\frac{\pi }{2}\end{array} \right.\left( {k \in \mathbb{Z}} \right)\end{array}\)
\(\begin{array}{l}c)\;\,co{s^2}x = 1\\ \Leftrightarrow \left[ \begin{array}{l}cosx = 1\\cosx = -1\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x = k2\pi \\x = \pi + k2\pi \end{array} \right. \Leftrightarrow x = k\pi ,k \in \mathbb{Z}\end{array}\)
Bài 2 trang 40 SGK Toán 11 tập 1 - Chân trời sáng tạo là một bài tập quan trọng trong chương trình học Toán 11, giúp học sinh củng cố kiến thức về hàm số bậc hai và ứng dụng của nó trong việc giải quyết các bài toán thực tế. Để giải bài tập này một cách hiệu quả, học sinh cần nắm vững các khái niệm cơ bản về hàm số bậc hai, bao gồm:
Đề bài Bài 2 trang 40 SGK Toán 11 tập 1 thường yêu cầu học sinh xác định các yếu tố của hàm số bậc hai (a, b, c), tìm tọa độ đỉnh của parabol, vẽ đồ thị hàm số và giải các bài toán liên quan đến ứng dụng của hàm số bậc hai.
Để giải Bài 2 trang 40 SGK Toán 11 tập 1, chúng ta sẽ thực hiện các bước sau:
Giả sử hàm số được cho là y = x2 - 4x + 3. Ta thực hiện các bước giải như sau:
Khi giải Bài 2 trang 40 SGK Toán 11 tập 1, học sinh cần chú ý các điểm sau:
Hàm số bậc hai có nhiều ứng dụng trong thực tế, ví dụ như:
Bài 2 trang 40 SGK Toán 11 tập 1 - Chân trời sáng tạo là một bài tập quan trọng giúp học sinh củng cố kiến thức về hàm số bậc hai và ứng dụng của nó. Bằng cách nắm vững các khái niệm cơ bản và thực hiện các bước giải một cách chính xác, học sinh có thể tự tin giải quyết bài tập này và các bài tập tương tự.