Logo Header
  1. Môn Toán
  2. Bài 5 trang 50 SGK Toán 11 tập 1 - Chân trời sáng tạo

Bài 5 trang 50 SGK Toán 11 tập 1 - Chân trời sáng tạo

Bài 5 trang 50 SGK Toán 11 tập 1 - Chân trời sáng tạo

Bài 5 trang 50 SGK Toán 11 tập 1 thuộc chương trình học Toán 11 Chân trời sáng tạo, tập trung vào việc giải quyết các bài toán liên quan đến phép biến hóa lượng giác. Bài tập này đòi hỏi học sinh nắm vững kiến thức về công thức lượng giác cơ bản và kỹ năng áp dụng vào giải quyết bài toán thực tế.

Tại giaitoan.edu.vn, chúng tôi cung cấp lời giải chi tiết, dễ hiểu cho Bài 5 trang 50 SGK Toán 11 tập 1, giúp học sinh hiểu rõ bản chất của bài toán và tự tin giải quyết các bài tập tương tự.

Cho dãy số \(\left( {{u_n}} \right)\) với \({u_n} = \frac{{2n - 1}}{{n + 1}}\). Chứng minh \(\left( {{u_n}} \right)\) là dãy số tăng và bị chặn.

Đề bài

Cho dãy số \(\left( {{u_n}} \right)\) với \({u_n} = \frac{{2n - 1}}{{n + 1}}\).

Chứng minh \(\left( {{u_n}} \right)\) là dãy số tăng và bị chặn.

Phương pháp giải - Xem chi tiếtBài 5 trang 50 SGK Toán 11 tập 1 - Chân trời sáng tạo 1

• Chứng minh \(\left( {{u_n}} \right)\) là dãy số tăng:

Bước 1: Tìm \({u_{n + 1}}\).

Bước 2: Xét hiệu \({u_{n + 1}} - {u_n}\).

Bước 3: Chứng minh \({u_{n + 1}} - {u_n} > 0 \Leftrightarrow {u_{n + 1}} > {u_n},\forall n \in {\mathbb{N}^*}\), từ đó kết luận dãy số \(\left( {{u_n}} \right)\) là dãy số tăng.

• Chứng minh \(\left( {{u_n}} \right)\) bị chặn: Sử dụng tính chất của bất đẳng thức.

Lời giải chi tiết

• Ta có: \({u_{n + 1}} = \frac{{2\left( {n + 1} \right) - 1}}{{\left( {n + 1} \right) + 1}} = \frac{{2n + 2 - 1}}{{n + 1 + 1}} = \frac{{2n + 1}}{{n + 2}}\)

Xét hiệu:

\(\begin{array}{l}{u_{n + 1}} - {u_n} = \frac{{2n + 1}}{{n + 2}} - \frac{{2n - 1}}{{n + 1}} = \frac{{\left( {2n + 1} \right)\left( {n + 1} \right) - \left( {2n - 1} \right)\left( {n + 2} \right)}}{{\left( {n + 2} \right)\left( {n + 1} \right)}}\\ = \frac{{\left( {2{n^2} + n + 2n + 1} \right) - \left( {2{n^2} - n + 4n - 2} \right)}}{{\left( {n + 2} \right)\left( {n + 1} \right)}}\\ = \frac{{2{n^2} + n + 2n + 1 - 2{n^2} + n - 4n + 2}}{{\left( {n + 2} \right)\left( {n + 1} \right)}} = \frac{3}{{\left( {n + 2} \right)\left( {n + 1} \right)}} > 0,\forall n \in {\mathbb{N}^*}\end{array}\)

Vậy \({u_{n + 1}} - {u_n} > 0 \Leftrightarrow {u_{n + 1}} > {u_n}\). Vậy dãy số \(\left( {{u_n}} \right)\) là dãy số tăng.

• Ta có: \({u_n} = \frac{{2n - 1}}{{n + 1}} = \frac{{2\left( {n + 1} \right) - 3}}{{n + 1}} = 2 - \frac{3}{{n + 1}}\)

\(\forall n \in {\mathbb{N}^*}\) ta có:

\(n + 1 > 0 \Leftrightarrow \frac{3}{{n + 1}} > 0 \Leftrightarrow 2 - \frac{3}{{n + 1}} < 2 \Leftrightarrow {u_n} < 2\). Vậy \(\left( {{u_n}} \right)\) bị chặn trên.

\(n \ge 1 \Leftrightarrow n + 1 \ge 1 + 1 \Leftrightarrow n + 1 \ge 2 \Leftrightarrow \frac{3}{{n + 1}} \le \frac{3}{2} \Leftrightarrow 2 - \frac{3}{{n + 1}} \ge 2 - \frac{3}{2} \Leftrightarrow {u_n} \ge \frac{1}{2}\)

Vậy \(\left( {{u_n}} \right)\) bị chặn dưới.

Ta thấy dãy số \(\left( {{u_n}} \right)\) bị chặn trên và bị chặn dưới nên dãy số \(\left( {{u_n}} \right)\) bị chặn.

Chinh phục Toán 11, mở rộng cánh cửa Đại học trong tầm tay! Khám phá ngay Bài 5 trang 50 SGK Toán 11 tập 1 - Chân trời sáng tạo – hành trang không thể thiếu trong chuyên mục Bài tập Toán lớp 11 trên nền tảng toán học. Bộ bài tập lý thuyết toán thpt được biên soạn chuyên sâu, bám sát chặt chẽ chương trình Toán lớp 11 và định hướng các kỳ thi quan trọng, cam kết tối ưu hóa toàn diện quá trình ôn luyện. Qua đó, học sinh không chỉ làm chủ kiến thức phức tạp mà còn rèn luyện tư duy giải quyết vấn đề, sẵn sàng cho các kỳ thi và chương trình đại học, nhờ phương pháp tiếp cận trực quan, logic và hiệu quả học tập vượt trội!

Bài 5 trang 50 SGK Toán 11 tập 1 - Chân trời sáng tạo: Giải chi tiết và hướng dẫn

Bài 5 trang 50 SGK Toán 11 tập 1 - Chân trời sáng tạo là một bài tập quan trọng trong chương trình học Toán 11, giúp học sinh củng cố kiến thức về phép biến hóa lượng giác. Để giải bài tập này một cách hiệu quả, học sinh cần nắm vững các công thức lượng giác cơ bản và kỹ năng áp dụng chúng vào giải quyết bài toán.

Nội dung bài tập

Bài 5 yêu cầu học sinh thực hiện các phép biến hóa lượng giác để rút gọn biểu thức hoặc chứng minh đẳng thức. Các dạng bài tập thường gặp bao gồm:

  • Rút gọn biểu thức lượng giác sử dụng các công thức cộng, trừ, nhân, chia góc.
  • Chứng minh đẳng thức lượng giác bằng cách biến đổi một vế về vế còn lại.
  • Giải phương trình lượng giác cơ bản.

Hướng dẫn giải chi tiết

Để giải Bài 5 trang 50 SGK Toán 11 tập 1, học sinh có thể thực hiện theo các bước sau:

  1. Xác định dạng bài tập: Xác định xem bài tập yêu cầu rút gọn biểu thức hay chứng minh đẳng thức.
  2. Áp dụng công thức lượng giác: Sử dụng các công thức lượng giác phù hợp để biến đổi biểu thức hoặc đẳng thức.
  3. Rút gọn biểu thức: Thực hiện các phép toán để rút gọn biểu thức về dạng đơn giản nhất.
  4. Kiểm tra kết quả: Kiểm tra lại kết quả để đảm bảo tính chính xác.

Ví dụ minh họa

Ví dụ 1: Rút gọn biểu thức cos(a + b) + cos(a - b)

Giải:

cos(a + b) + cos(a - b) = (cos a cos b - sin a sin b) + (cos a cos b + sin a sin b) = 2 cos a cos b

Ví dụ 2: Chứng minh đẳng thức sin^2 a + cos^2 a = 1

Giải:

Ta có: sin^2 a + cos^2 a = (sin a)^2 + (cos a)^2. Theo định lý Pitago trong tam giác vuông, ta có sin^2 a + cos^2 a = 1. Vậy đẳng thức được chứng minh.

Lưu ý quan trọng

  • Nắm vững các công thức lượng giác cơ bản là yếu tố then chốt để giải quyết bài tập.
  • Thực hành thường xuyên để làm quen với các dạng bài tập khác nhau.
  • Sử dụng máy tính bỏ túi để kiểm tra kết quả và đảm bảo tính chính xác.

Bài tập luyện tập

Để củng cố kiến thức và kỹ năng giải bài tập, học sinh có thể thực hiện các bài tập sau:

  • Rút gọn các biểu thức lượng giác sau: sin(a + b) - sin(a - b), cos(2a), tan(a + b)
  • Chứng minh các đẳng thức lượng giác sau: sin(2a) = 2 sin a cos a, cos(2a) = cos^2 a - sin^2 a
  • Giải các phương trình lượng giác sau: sin x = 0, cos x = 1, tan x = 0

Hy vọng với hướng dẫn chi tiết và bài tập luyện tập này, học sinh sẽ tự tin hơn trong việc giải Bài 5 trang 50 SGK Toán 11 tập 1 - Chân trời sáng tạo và đạt kết quả tốt trong môn Toán.

Tài liệu, đề thi và đáp án Toán 11