Logo Header
  1. Môn Toán
  2. Bài 4 trang 81 SGK Toán 11 tập 2 – Chân trời sáng tạo

Bài 4 trang 81 SGK Toán 11 tập 2 – Chân trời sáng tạo

Bài 4 trang 81 SGK Toán 11 tập 2 – Chân trời sáng tạo

Bài 4 trang 81 SGK Toán 11 tập 2 thuộc chương trình học Toán 11 Chân trời sáng tạo, tập trung vào việc vận dụng kiến thức về đạo hàm để giải quyết các bài toán thực tế. Bài tập này đòi hỏi học sinh phải nắm vững các công thức đạo hàm cơ bản và kỹ năng giải toán.

Tại giaitoan.edu.vn, chúng tôi cung cấp lời giải chi tiết, dễ hiểu cho Bài 4 trang 81 SGK Toán 11 tập 2, giúp các em học sinh hiểu rõ bản chất của bài toán và tự tin làm bài tập.

Cho hình lăng trụ tam giác đều (ABC.A'B'C') có (AB = a), góc giữa hai mặt phẳng (left( {A'BC} right)) và (left( {ABC} right)) bằng ({60^ circ }).

Đề bài

Cho hình lăng trụ tam giác đều \(ABC.A'B'C'\) có \(AB = a\), góc giữa hai mặt phẳng \(\left( {A'BC} \right)\) và \(\left( {ABC} \right)\) bằng \({60^ \circ }\).

a) Tính khoảng cách giữa hai đáy của hình lăng trụ.

b) Tinh thể tích của khối lăng trụ.

Phương pháp giải - Xem chi tiếtBài 4 trang 81 SGK Toán 11 tập 2 – Chân trời sáng tạo 1

‒ Cách tính khoảng cách giữa hai mặt phẳng song song: Tính khoảng cách một điểm nằm trên mặt phẳng này đến mặt phẳng còn lại.

‒ Công thức tính thể tích khối lăng trụ: \(V = Sh\).

Lời giải chi tiết

Bài 4 trang 81 SGK Toán 11 tập 2 – Chân trời sáng tạo 2

a) Gọi \(I\) là trung điểm của \(BC\).

Tam giác \(ABC\) đều \( \Rightarrow AI \bot BC\)

Tam giác \(A'BC\) cân tại \(A' \Rightarrow A'I \bot BC\)

\( \Rightarrow \left( {\left( {A'BC} \right),\left( {ABC} \right)} \right) = \left( {A'I,AI} \right) = \widehat {AI{\rm{A}}'} = {60^ \circ }\)

Tam giác \(ABC\) đều \( \Rightarrow AI = \frac{{AB\sqrt 3 }}{2} = \frac{{a\sqrt 3 }}{2}\)

\( \Rightarrow AA' = AI.\tan \widehat {AI{\rm{A}}'} = \frac{{3a}}{2}\)

b) \({S_{\Delta ABC}} = \frac{{A{B^2}\sqrt 3 }}{4} = \frac{{{a^2}\sqrt 3 }}{4}\)

\({V_{ABC.A'B'C'}} = {S_{\Delta ABC}}.AA' = \frac{{3{a^3}\sqrt 3 }}{8}\)

Chinh phục Toán 11, mở rộng cánh cửa Đại học trong tầm tay! Khám phá ngay Bài 4 trang 81 SGK Toán 11 tập 2 – Chân trời sáng tạo – hành trang không thể thiếu trong chuyên mục Đề thi Toán lớp 11 trên nền tảng toán. Bộ bài tập toán thpt được biên soạn chuyên sâu, bám sát chặt chẽ chương trình Toán lớp 11 và định hướng các kỳ thi quan trọng, cam kết tối ưu hóa toàn diện quá trình ôn luyện. Qua đó, học sinh không chỉ làm chủ kiến thức phức tạp mà còn rèn luyện tư duy giải quyết vấn đề, sẵn sàng cho các kỳ thi và chương trình đại học, nhờ phương pháp tiếp cận trực quan, logic và hiệu quả học tập vượt trội!

Bài 4 trang 81 SGK Toán 11 tập 2 – Chân trời sáng tạo: Giải chi tiết và hướng dẫn

Bài 4 trang 81 SGK Toán 11 tập 2 Chân trời sáng tạo là một bài tập quan trọng trong chương trình học, yêu cầu học sinh vận dụng kiến thức về đạo hàm để giải quyết các bài toán liên quan đến tốc độ thay đổi của hàm số. Dưới đây là lời giải chi tiết và hướng dẫn giải bài tập này:

Nội dung bài tập

Bài 4 yêu cầu học sinh giải các bài toán về đạo hàm, cụ thể là tính đạo hàm của hàm số, tìm điểm cực trị, và khảo sát hàm số. Các bài toán thường được trình bày dưới dạng các hàm số đơn giản, nhưng đòi hỏi học sinh phải áp dụng đúng các công thức và kỹ năng đã học.

Lời giải chi tiết

Để giải Bài 4 trang 81 SGK Toán 11 tập 2, học sinh cần thực hiện các bước sau:

  1. Xác định hàm số: Đọc kỹ đề bài để xác định chính xác hàm số cần xét.
  2. Tính đạo hàm: Sử dụng các công thức đạo hàm cơ bản để tính đạo hàm cấp một của hàm số.
  3. Tìm điểm cực trị: Giải phương trình đạo hàm bằng 0 để tìm các điểm nghi ngờ là điểm cực trị.
  4. Khảo sát hàm số: Sử dụng đạo hàm cấp hai để xác định loại điểm cực trị (cực đại hoặc cực tiểu).
  5. Vẽ đồ thị hàm số: Dựa vào các thông tin đã tìm được để vẽ đồ thị hàm số.

Ví dụ minh họa

Giả sử hàm số cần xét là f(x) = x3 - 3x2 + 2. Ta thực hiện các bước sau:

  • Tính đạo hàm: f'(x) = 3x2 - 6x
  • Tìm điểm cực trị: 3x2 - 6x = 0 => x = 0 hoặc x = 2
  • Khảo sát hàm số: f''(x) = 6x - 6. Tại x = 0, f''(0) = -6 < 0 => x = 0 là điểm cực đại. Tại x = 2, f''(2) = 6 > 0 => x = 2 là điểm cực tiểu.

Lưu ý khi giải bài tập

Khi giải Bài 4 trang 81 SGK Toán 11 tập 2, học sinh cần lưu ý những điều sau:

  • Nắm vững các công thức đạo hàm cơ bản.
  • Thực hiện các phép tính cẩn thận, tránh sai sót.
  • Kiểm tra lại kết quả sau khi giải xong.
  • Vận dụng linh hoạt các kiến thức đã học để giải quyết các bài toán tương tự.

Ứng dụng của đạo hàm trong thực tế

Đạo hàm có rất nhiều ứng dụng trong thực tế, ví dụ như:

  • Tính vận tốc và gia tốc: Trong vật lý, đạo hàm của quãng đường theo thời gian là vận tốc, và đạo hàm của vận tốc theo thời gian là gia tốc.
  • Tìm điểm tối ưu: Trong kinh tế, đạo hàm được sử dụng để tìm điểm tối ưu của hàm lợi nhuận hoặc chi phí.
  • Dự báo xu hướng: Trong tài chính, đạo hàm được sử dụng để dự báo xu hướng của thị trường chứng khoán.

Bài tập tương tự

Để củng cố kiến thức về đạo hàm, học sinh có thể làm thêm các bài tập tương tự sau:

  • Bài 1 trang 80 SGK Toán 11 tập 2
  • Bài 2 trang 80 SGK Toán 11 tập 2
  • Bài 3 trang 81 SGK Toán 11 tập 2

Kết luận

Bài 4 trang 81 SGK Toán 11 tập 2 là một bài tập quan trọng giúp học sinh hiểu rõ hơn về đạo hàm và ứng dụng của nó trong thực tế. Hy vọng với lời giải chi tiết và hướng dẫn giải trên, các em học sinh sẽ tự tin hơn khi làm bài tập và đạt kết quả tốt trong môn Toán.

Tài liệu, đề thi và đáp án Toán 11