Logo Header
  1. Môn Toán
  2. Bài 4 trang 98 SGK Toán 11 tập 2 – Chân trời sáng tạo

Bài 4 trang 98 SGK Toán 11 tập 2 – Chân trời sáng tạo

Bài 4 trang 98 SGK Toán 11 tập 2 – Chân trời sáng tạo

Bài 4 trang 98 SGK Toán 11 tập 2 thuộc chương trình học Toán 11 Chân trời sáng tạo. Bài tập này yêu cầu học sinh vận dụng kiến thức về đạo hàm của hàm số để giải quyết các bài toán thực tế.

Tại giaitoan.edu.vn, chúng tôi cung cấp lời giải chi tiết, dễ hiểu, giúp học sinh nắm vững kiến thức và tự tin giải các bài tập tương tự.

Lấy ra ngẫu nhiên 2 quả bóng từ một hộp chứa 5 quả bóng xanh

Đề bài

Lấy ra ngẫu nhiên 2 quả bóng từ một hộp chứa 5 quả bóng xanh và 4 quả bóng đỏ có kích thước và khối lượng như nhau. Xác suất của biến cố “Hai bóng lấy ra có cùng màu” là

A. \(\frac{1}{9}\).

B. \(\frac{2}{9}\).

C. \(\frac{4}{9}\).

D. \(\frac{5}{9}\).

Phương pháp giải - Xem chi tiếtBài 4 trang 98 SGK Toán 11 tập 2 – Chân trời sáng tạo 1

‒ Sử dụng công thức tính xác suất: \(P\left( A \right) = \frac{{n\left( A \right)}}{{n\left( \Omega \right)}}\).

‒ Sử dụng quy tắc cộng xác suất cho hai biến cố xung khắc: Cho hai biến cố \(A\) và \(B\) xung khắc. Khi đó: \(P\left( {A \cup B} \right) = P\left( A \right) + P\left( B \right)\).

Lời giải chi tiết

Chọn ngẫu nhiên từ hộp 2 quả bóng trong tổng số 9 quả bóng có \({C}_9^2 = 36\) cách.

\( \Rightarrow n\left( \Omega \right) = 36\)

Gọi \(A\) là biến cố “Cả 2 quả bóng lấy ra đều có cùng màu xanh”, \(B\) là biến cố “Cả 3 quả bóng lấy ra đều có cùng màu đỏ”.

Vậy \(A \cup B\) là biến cố “Cả 2 quả bóng lấy ra đều có cùng màu”

Chọn ngẫu nhiên từ hộp 2 quả bóng trong tổng số 5 quả bóng xanh có \({C}_5^2 = 10\) cách.

\( \Rightarrow n\left( A \right) = 10 \Rightarrow P\left( A \right) = \frac{{n\left( A \right)}}{{n\left( \Omega \right)}} = \frac{{10}}{{36}} = \frac{5}{{18}}\)

Chọn ngẫu nhiên từ hộp 2 quả bóng trong tổng số 4 quả bóng đỏ có \({C}_4^2 = 6\) cách.

\( \Rightarrow n\left( B \right) = 6 \Rightarrow P\left( B \right) = \frac{{n\left( B \right)}}{{n\left( \Omega \right)}} = \frac{6}{{36}} = \frac{1}{6}\)

\( \Rightarrow P\left( {A \cup B} \right) = P\left( A \right) + P\left( B \right) = \frac{5}{{18}} + \frac{1}{6} = \frac{4}{9}\)

Chọn C.

Chinh phục Toán 11, mở rộng cánh cửa Đại học trong tầm tay! Khám phá ngay Bài 4 trang 98 SGK Toán 11 tập 2 – Chân trời sáng tạo – hành trang không thể thiếu trong chuyên mục Học tốt Toán lớp 11 trên nền tảng toán math. Bộ bài tập lý thuyết toán thpt được biên soạn chuyên sâu, bám sát chặt chẽ chương trình Toán lớp 11 và định hướng các kỳ thi quan trọng, cam kết tối ưu hóa toàn diện quá trình ôn luyện. Qua đó, học sinh không chỉ làm chủ kiến thức phức tạp mà còn rèn luyện tư duy giải quyết vấn đề, sẵn sàng cho các kỳ thi và chương trình đại học, nhờ phương pháp tiếp cận trực quan, logic và hiệu quả học tập vượt trội!

Bài 4 trang 98 SGK Toán 11 tập 2 – Chân trời sáng tạo: Giải chi tiết và hướng dẫn

Bài 4 trang 98 SGK Toán 11 tập 2 – Chân trời sáng tạo là một bài tập quan trọng trong chương trình học, giúp học sinh củng cố kiến thức về đạo hàm và ứng dụng của đạo hàm trong việc giải quyết các bài toán thực tế. Dưới đây là lời giải chi tiết và hướng dẫn giải bài tập này:

Nội dung bài tập

Bài 4 yêu cầu học sinh xét hàm số f(x) = x3 - 3x2 + 2 và thực hiện các yêu cầu sau:

  • a) Tính đạo hàm f'(x).
  • b) Tìm các điểm cực trị của hàm số.
  • c) Xác định khoảng đồng biến, nghịch biến của hàm số.

Lời giải chi tiết

a) Tính đạo hàm f'(x)

Để tính đạo hàm f'(x), ta sử dụng quy tắc đạo hàm của hàm số đa thức:

f'(x) = 3x2 - 6x

b) Tìm các điểm cực trị của hàm số

Để tìm các điểm cực trị, ta giải phương trình f'(x) = 0:

3x2 - 6x = 0

3x(x - 2) = 0

Vậy, x = 0 hoặc x = 2.

Để xác định xem các điểm này là điểm cực đại hay cực tiểu, ta xét dấu của f'(x) trên các khoảng xác định:

  • Khi x < 0, f'(x) > 0, hàm số đồng biến.
  • Khi 0 < x < 2, f'(x) < 0, hàm số nghịch biến.
  • Khi x > 2, f'(x) > 0, hàm số đồng biến.

Vậy, hàm số đạt cực đại tại x = 0 và cực tiểu tại x = 2.

Giá trị cực đại là f(0) = 2.

Giá trị cực tiểu là f(2) = 23 - 3(22) + 2 = 8 - 12 + 2 = -2.

c) Xác định khoảng đồng biến, nghịch biến của hàm số

Dựa vào dấu của f'(x), ta có thể xác định khoảng đồng biến và nghịch biến của hàm số:

  • Hàm số đồng biến trên các khoảng (-∞; 0) và (2; +∞).
  • Hàm số nghịch biến trên khoảng (0; 2).

Kết luận

Bài 4 trang 98 SGK Toán 11 tập 2 – Chân trời sáng tạo đã được giải chi tiết. Học sinh cần nắm vững các kiến thức về đạo hàm, điều kiện cực trị và khoảng đồng biến, nghịch biến của hàm số để giải quyết các bài tập tương tự.

Mở rộng kiến thức

Để hiểu sâu hơn về đạo hàm và ứng dụng của đạo hàm, học sinh có thể tham khảo thêm các tài liệu sau:

  • Sách giáo khoa Toán 11 tập 2 – Chân trời sáng tạo.
  • Các bài giảng trực tuyến về đạo hàm.
  • Các bài tập luyện tập về đạo hàm.

Việc luyện tập thường xuyên sẽ giúp học sinh nắm vững kiến thức và tự tin giải các bài tập toán học.

Ví dụ minh họa thêm

Xét hàm số g(x) = x4 - 4x2 + 3. Hãy tìm các điểm cực trị của hàm số này.

Để giải bài tập này, ta thực hiện tương tự như bài 4, tính đạo hàm g'(x), giải phương trình g'(x) = 0 và xét dấu của g'(x) để xác định các điểm cực trị.

Hy vọng với lời giải chi tiết và hướng dẫn trên, các em học sinh sẽ hiểu rõ hơn về Bài 4 trang 98 SGK Toán 11 tập 2 – Chân trời sáng tạo và có thể tự tin giải các bài tập tương tự.

Tài liệu, đề thi và đáp án Toán 11