Chào mừng bạn đến với giaitoan.edu.vn, nơi cung cấp lời giải chi tiết và dễ hiểu cho các bài tập Toán 11. Bài viết này sẽ hướng dẫn bạn giải quyết các bài tập trong mục 2 trang 59 sách giáo khoa Toán 11 tập 1, chương trình Chân trời sáng tạo.
Chúng tôi cam kết cung cấp nội dung chính xác, đầy đủ và giúp bạn nắm vững kiến thức Toán học một cách hiệu quả.
Cho cấp số nhân (left( {{u_n}} right)) có công bội (q). Tính ({u_2},{u_3},{u_4}) và ({u_{10}}) theo ({u_1}) và (q).
Cho cấp số nhân \(\left( {{u_n}} \right)\) có công bội \(q\). Tính \({u_2},{u_3},{u_4}\) và \({u_{10}}\) theo \({u_1}\) và \(q\).
Phương pháp giải:
Dựa vào công thức \({u_{n + 1}} = {u_n}.q\).
Lời giải chi tiết:
Ta có:
\(\begin{array}{l}{u_2} = {u_1}.q\\{u_3} = {u_2}.q = \left( {{u_1}.q} \right).q = {u_1}.{q^2}\\{u_4} = {u_3}.q = \left( {{u_1}.{q^2}} \right).q = {u_1}.{q^3}\\ \vdots \\{u_{10}} = {u_1}.{q^9}\end{array}\).
Viết công thức số hạng tổng quát \({u_n}\) theo số hạng đầu \({u_1}\) và công bội \(q\) của các cấp số nhân sau:
a) \(5;10;20;40;80;...\)
b) \(1;\frac{1}{{10}};\frac{1}{{100}};\frac{1}{{1000}};\frac{1}{{10000}};...\)
Phương pháp giải:
Sử dụng công thức số hạng tổng quát của cấp số nhân có số hạng đầu \({u_1}\) và công bội \(q\) thì số hạng tổng quát là: \({u_n} = {u_1}.{q^{n - 1}},n \ge 2\).
Lời giải chi tiết:
a) Cấp số nhân có số hạng đầu \({u_1} = 5\) và công bội \(q = 2\).
Vậy ta có: \({u_n} = {u_1}.{q^{n - 1}} = {5.2^{n - 1}}\).
b) Cấp số nhân có số hạng đầu \({u_1} = 1\) và công bội \(q = \frac{1}{{10}}\).
Vậy ta có: \({u_n} = {u_1}.{q^{n - 1}} = 1.{\left( {\frac{1}{{10}}} \right)^{n - 1}} = \frac{1}{{{{10}^{n - 1}}}}\).
Chu kì bán rã của nguyên tố phóng xạ poloni 210 là 138 ngày, nghĩa là sau 138 ngày, khối lượng của nguyên tố đó chỉ còn một nửa (theo; https://vi.wikipedia.org/wiki/Poloni-210). Tính khối lượng còn lại của 20 gam poloni 210 sau:
a) 690 ngày.
b) 7314 ngày (khoảng 20 năm).
Phương pháp giải:
Sử dụng công thức số hạng tổng quát của cấp số nhân có số hạng đầu \({u_1}\) và công bội \(q\) thì số hạng tổng quát là: \({u_n} = {u_1}.{q^{n - 1}},n \ge 2\).
Lời giải chi tiết:
Dãy số chỉ khối lượng còn lại của 20 gam poloni 210 sau \(n\) chu kì là một cấp số nhân có số hạng đầu \({u_1} = 20\) và công bội \(q = \frac{1}{2}\).
a) Sau 690 ngày thì số chu kì bán rã thực hiện được là: \(690:138 = 5\) (chu kì).
Vậy khối lượng còn lại của 20 gam poloni 210 là: \({u_5} = {u_1}.{q^4} = 20.{\left( {\frac{1}{2}} \right)^4} = 1,25\) (gam).
b) Sau 7314 ngày thì số chu kì bán rã thực hiện được là: \(7314:138 = 53\) (chu kì).
Vậy khối lượng còn lại của 20 gam poloni 210 là: \({u_{53}} = {u_1}.{q^{52}} = 20.{\left( {\frac{1}{2}} \right)^{52}} \approx 4,44.{10^{ - 15}}\) (gam).
Mục 2 trang 59 SGK Toán 11 tập 1 - Chân trời sáng tạo thường tập trung vào các bài toán liên quan đến phép biến hình, đặc biệt là phép tịnh tiến và phép quay. Việc nắm vững kiến thức về các phép biến hình này là nền tảng quan trọng để học tập các chương tiếp theo của môn Toán 11.
Mục 2 thường bao gồm các bài tập sau:
Để giải các bài tập trong mục 2 trang 59 SGK Toán 11 tập 1 - Chân trời sáng tạo, bạn có thể áp dụng các phương pháp sau:
Ví dụ: Cho điểm A(1; 2) và phép tịnh tiến theo vectơ v = (3; -1). Tìm tọa độ điểm A' là ảnh của điểm A qua phép tịnh tiến.
Giải:
Tọa độ điểm A' được tính theo công thức:
A'(xA + xv; yA + yv) = (1 + 3; 2 - 1) = (4; 1)
Vậy, tọa độ điểm A' là (4; 1).
Khi giải các bài tập về phép biến hình, bạn cần lưu ý những điều sau:
Để học tập và ôn luyện môn Toán 11 hiệu quả, bạn có thể tham khảo các tài liệu sau:
Hy vọng rằng bài viết này đã cung cấp cho bạn những kiến thức và phương pháp giải bài tập hiệu quả cho mục 2 trang 59 SGK Toán 11 tập 1 - Chân trời sáng tạo. Chúc bạn học tập tốt!