Bài 13 trang 42 SGK Toán 11 tập 1 thuộc chương trình học Toán 11 Chân trời sáng tạo, tập trung vào việc rèn luyện kỹ năng giải bài toán liên quan đến vectơ. Bài tập này giúp học sinh củng cố kiến thức về các phép toán vectơ, tích vô hướng và ứng dụng của chúng trong hình học.
Tại giaitoan.edu.vn, chúng tôi cung cấp lời giải chi tiết, dễ hiểu cho Bài 13 trang 42, giúp các em học sinh nắm vững kiến thức và tự tin giải các bài tập tương tự.
Cho vận tốc (v{rm{ }}left( {cm/s} right))của một con lắc đơn theo thời gian t (giây)
Đề bài
Cho vận tốc \(v{\rm{ }}\left( {cm/s} \right)\) của một con lắc đơn theo thời gian t (giây) được cho bởi công thức \(v = - 3sin\left( {1,5t + \frac{\pi }{3}} \right).\)
Xác định các thời điểm t mà tại đó:
a) Vận tốc con lắc đạt giá trị lớn nhất
b) Vận tốc con lắc bằng 1,5 cm/s
Phương pháp giải - Xem chi tiết
a, Dựa vào tính chất \( - 1 \le \sin x\; \le 1\) để tìm giá trị lớn nhất.
b, Giải phương trình sin để tìm t.
Lời giải chi tiết
Do \( - 1 \le sin\left( {1,5t + \frac{\pi }{3}} \right) \le 1 \Leftrightarrow - 3 \le - 3sin\left( {1,5t + \frac{\pi }{3}} \right) \le 3 \Leftrightarrow - 3 \le v \le 3\)
a) Vận tốc con lắc đạt giá trị lớn nhất khi
\( - 3sin\left( {1,5t + \frac{\pi }{3}} \right) = 3 \Leftrightarrow sin\left( {1,5t + \frac{\pi }{3}} \right) = - 1\)
\(\begin{array}{l} \Leftrightarrow sin\left( {1,5t + \frac{\pi }{3}} \right) = \sin \left( { - \frac{\pi }{2}} \right)\\ \Leftrightarrow \left[ \begin{array}{l}1,5t + \frac{\pi }{3} = - \frac{\pi }{2} + k2\pi \\1,5t + \frac{\pi }{3} = \pi + \frac{\pi }{2} + k2\pi \end{array} \right. \Leftrightarrow t = - \frac{{5\pi }}{9} + k\frac{{4\pi }}{3},k \in \mathbb{Z}.\end{array}\)
Vì vậy vận tốc con lắc đạt giá trị lớn nhất tại các thời điểm \(t = - \frac{{5\pi }}{9} + k\frac{{4\pi }}{3},k \in \mathbb{Z}.\)
b) Để vận tốc con lắc bằng 1,5 cm/s thì \( - 3sin\left( {1,5t + \frac{\pi }{3}} \right) = 1,5 \Leftrightarrow sin\left( {1,5t + \frac{\pi }{3}} \right) = - \frac{1}{2}\)
\(\begin{array}{l} \Leftrightarrow sin\left( {1,5t + \frac{\pi }{3}} \right) = \sin \left( { - \frac{\pi }{6}} \right)\\ \Leftrightarrow \left[ \begin{array}{l}1,5t + \frac{\pi }{3} = - \frac{\pi }{6} + k2\pi \\1,5t + \frac{\pi }{3} = \pi + \frac{\pi }{6} + k2\pi \end{array} \right. \Leftrightarrow \left[ \begin{array}{l}t = - \frac{\pi }{3} + k\frac{{4\pi }}{3}\\t = \frac{{5\pi }}{9} + k\frac{{4\pi }}{3}\end{array} \right.\left( {k \in \mathbb{Z}} \right)\end{array}\)
Vậy tại các thời điểm \(t = - \frac{\pi }{3} + k\frac{{4\pi }}{3}\), \(t = \frac{{5\pi }}{9} + k\frac{{4\pi }}{3}\), \(k \in \mathbb{Z}\) thì vận tốc của con lắc đạt 1,5 cm/s.
Bài 13 trang 42 SGK Toán 11 tập 1 - Chân trời sáng tạo là một bài tập quan trọng trong chương trình học, đòi hỏi học sinh phải nắm vững kiến thức về vectơ và các phép toán liên quan. Dưới đây là giải chi tiết bài tập này, cùng với hướng dẫn từng bước để giúp các em hiểu rõ cách giải.
Bài 13 yêu cầu học sinh thực hiện các phép toán với vectơ, bao gồm cộng, trừ, nhân với một số thực và tính tích vô hướng của hai vectơ. Bài tập thường được trình bày dưới dạng các bài toán hình học, trong đó các vectơ được sử dụng để biểu diễn các đoạn thẳng, đường thẳng và các yếu tố hình học khác.
Để giải bài tập này, học sinh cần:
Giả sử bài tập yêu cầu tính độ dài của một đoạn thẳng AB, biết tọa độ của điểm A(x1, y1) và điểm B(x2, y2). Ta có thể sử dụng công thức tính độ dài đoạn thẳng:
AB = √((x2 - x1)² + (y2 - y1)²)
Để giải bài tập về vectơ hiệu quả, bạn nên:
Ngoài SGK Toán 11 tập 1 - Chân trời sáng tạo, bạn có thể tham khảo thêm các tài liệu sau:
Bài 13 trang 42 SGK Toán 11 tập 1 - Chân trời sáng tạo là một bài tập quan trọng, giúp học sinh củng cố kiến thức về vectơ và các phép toán liên quan. Hy vọng với giải chi tiết và hướng dẫn trên, các em học sinh sẽ tự tin giải bài tập này và đạt kết quả tốt trong môn Toán.