Chào mừng các em học sinh đến với lời giải chi tiết Bài 5 trang 33 SGK Toán 11 tập 2 - Chân trời sáng tạo. Bài học này thuộc chương trình học Toán 11, tập trung vào các kiến thức về đạo hàm và ứng dụng của đạo hàm trong việc giải quyết các bài toán thực tế.
giaitoan.edu.vn luôn đồng hành cùng các em trong quá trình học tập, cung cấp lời giải chính xác, dễ hiểu và phương pháp giải bài tập hiệu quả.
Giải các bất phương trình sau:
Đề bài
Giải các bất phương trình sau:
a) \({\log _2}\left( {x - 2} \right) < 2\);
b) \(\log \left( {x + 1} \right) \ge \log \left( {2x - 1} \right)\).
Phương pháp giải - Xem chi tiết
Bước 1: Tìm ĐKXĐ.
Bước 2: Đưa 2 vế của phương trình về cùng cơ số và giải phương trình.
Bước 3: Kết luận.
Lời giải chi tiết
a) \({\log _2}\left( {x - 2} \right) < 2\)
Điều kiện: \(x - 2 > 0 \Leftrightarrow x > 2\)
\(BPT \Leftrightarrow x - 2 < {2^2} \Leftrightarrow x - 2 < 4 \Leftrightarrow x < 6\)
Kết hợp với điều kiện ta được nghiệm của bất phương trình là \(2 < x < 6\).
b) \(\log \left( {x + 1} \right) \ge \log \left( {2x - 1} \right)\)
Điều kiện: \(\left\{ \begin{array}{l}x + 1 > 0\\2{\rm{x}} - 1 > 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x > - 1\\x > \frac{1}{2}\end{array} \right. \Leftrightarrow x > \frac{1}{2}\)
\(BPT \Leftrightarrow x + 1 \ge 2{\rm{x}} - 1 \Leftrightarrow - x \ge - 2 \Leftrightarrow x \le 2\)
Kết hợp với điều kiện ta được nghiệm của bất phương trình là \(\frac{1}{2} < x \le 2\).
Bài 5 trang 33 SGK Toán 11 tập 2 - Chân trời sáng tạo là một bài tập quan trọng trong chương trình học, giúp học sinh củng cố kiến thức về đạo hàm và ứng dụng của nó. Bài tập này thường yêu cầu học sinh phải tính đạo hàm của hàm số, tìm cực trị của hàm số, hoặc giải các bài toán liên quan đến tối ưu hóa.
Bài tập thường bao gồm các dạng câu hỏi sau:
Để giải quyết bài tập này một cách hiệu quả, học sinh cần nắm vững các kiến thức sau:
Để giúp các em học sinh hiểu rõ hơn về cách giải bài tập này, chúng ta sẽ cùng nhau giải chi tiết một số ví dụ cụ thể.
Giải:
f'(x) = 3x2 + 4x - 5
Giải:
f'(x) = 3x2 - 6x
Giải phương trình f'(x) = 0, ta được x = 0 hoặc x = 2.
Khảo sát dấu của f'(x) trên các khoảng (-∞, 0), (0, 2), và (2, +∞), ta thấy:
Vậy hàm số đạt cực đại tại x = 0 và cực tiểu tại x = 2.
Khi giải bài tập này, các em cần lưu ý những điều sau:
Để hiểu rõ hơn về đạo hàm và ứng dụng của nó, các em có thể tham khảo thêm các tài liệu sau:
Hy vọng với lời giải chi tiết và hướng dẫn trên, các em học sinh sẽ tự tin hơn khi giải quyết Bài 5 trang 33 SGK Toán 11 tập 2 - Chân trời sáng tạo. Chúc các em học tập tốt!