Chào mừng các em học sinh đến với bài giải bài tập 2.20 trang 47 SGK Toán 9 tập 1 trên giaitoan.edu.vn. Bài tập này thuộc chương Hàm số bậc nhất và là một phần quan trọng trong việc củng cố kiến thức về hàm số.
Chúng tôi cung cấp lời giải chi tiết, dễ hiểu, giúp các em nắm vững phương pháp giải và áp dụng vào các bài tập tương tự.
Cho ba số thực \(x,y,z\). Biết rằng \(y \ge z\). Hãy so sánh mỗi cặp số sau và giải thích vì sao. a) \(y - 3\) và \(z - 3\). b) \( - 5y\) và \( - 5z\). c) \(\frac{y}{3}\) và \(\frac{z}{3}\). d) \(x + 2y\) và \(x + 2z\).
Đề bài
Cho ba số thực \(x,y,z\). Biết rằng \(y \ge z\). Hãy so sánh mỗi cặp số sau và giải thích vì sao.
a) \(y - 3\) và \(z - 3\).
b) \( - 5y\) và \( - 5z\).
c) \(\frac{y}{3}\) và \(\frac{z}{3}\).
d) \(x + 2y\) và \(x + 2z\).
Phương pháp giải - Xem chi tiết
Dựa vào mối liên hệ giữa thứ tự và các phép toán để giải bài toán.
Lời giải chi tiết
a) Vì \(y \ge z\) nên cộng cả hai vế của bất đẳng thức với số \( - 3\). Ta được \(y - 3 \ge z - 3\).
b) Vì \(y \ge z\) nên nhân hai vế của bất đẳng thức với số \( - 5 < 0\). Ta được \( - 5y \le - 5z\).
c) Vì \(y \ge z\) nên nhân hai vế của bất đẳng thức với số \(\frac{1}{3} > 0\). Ta được \(\frac{y}{3} \ge \frac{z}{3}\).
d) Vì \(y \ge z\) nên nhân hai vế của bất đẳng thức với số \(2 > 0\). Ta được \(2y \ge 2z\).
Cộng \(x\) vào hai vế của bất đẳng thức trên, ta được: \(x + 2y \ge x + 2z\).
Bài tập 2.20 trang 47 SGK Toán 9 tập 1 yêu cầu chúng ta xét hàm số y = (m-2)x + 3. Để hàm số này là hàm số bậc nhất, điều kiện cần và đủ là hệ số của x khác 0, tức là m - 2 ≠ 0. Bài viết này sẽ đi sâu vào phân tích điều kiện này và cách xác định giá trị của m để đảm bảo hàm số thỏa mãn yêu cầu.
Hàm số y = ax + b được gọi là hàm số bậc nhất khi và chỉ khi a ≠ 0. Trong trường hợp bài tập này, a = m - 2. Do đó, để y = (m-2)x + 3 là hàm số bậc nhất, chúng ta cần có:
m - 2 ≠ 0
Giải phương trình này, ta được:
m ≠ 2
Điều kiện m ≠ 2 có nghĩa là giá trị của m không thể bằng 2. Nếu m = 2, hàm số sẽ trở thành y = (2-2)x + 3 = 0x + 3 = 3, đây là một hàm số hằng, không phải hàm số bậc nhất. Việc hiểu rõ điều này là rất quan trọng để tránh những sai lầm trong quá trình giải bài tập.
Để làm rõ hơn, chúng ta hãy xét một vài ví dụ:
Ngoài việc xác định hàm số bậc nhất, các em cũng cần nắm vững các kiến thức liên quan như:
Để củng cố kiến thức, các em có thể tự giải thêm các bài tập tương tự trong SGK và sách bài tập Toán 9 tập 1. Ngoài ra, các em cũng có thể tham khảo các bài giảng online và các tài liệu học tập khác trên giaitoan.edu.vn.
Bài tập 2.20 trang 47 SGK Toán 9 tập 1 là một bài tập cơ bản nhưng quan trọng trong chương Hàm số bậc nhất. Việc nắm vững điều kiện để một hàm số là hàm số bậc nhất và biết cách áp dụng vào giải bài tập là rất cần thiết để các em học tốt môn Toán 9.
Hy vọng với lời giải chi tiết và những phân tích trên, các em đã hiểu rõ cách giải bài tập này. Chúc các em học tập tốt!
Giá trị của m | Hàm số | Kết luận |
---|---|---|
m = 3 | y = x + 3 | Hàm số bậc nhất |
m = 1 | y = -x + 3 | Hàm số bậc nhất |
m = 2 | y = 3 | Hàm số hằng |