Logo Header
  1. Môn Toán
  2. Giải bài tập 4.9 trang 86 SGK Toán 9 tập 1 - Cùng khám phá

Giải bài tập 4.9 trang 86 SGK Toán 9 tập 1 - Cùng khám phá

Giải bài tập 4.9 trang 86 SGK Toán 9 tập 1

Chào mừng các em học sinh đến với bài giải bài tập 4.9 trang 86 SGK Toán 9 tập 1 của giaitoan.edu.vn. Bài tập này thuộc chương Hàm số bậc nhất và là một phần quan trọng trong việc củng cố kiến thức về hàm số.

Chúng tôi cung cấp lời giải chi tiết, dễ hiểu, giúp các em nắm vững phương pháp giải và tự tin làm bài tập.

Tính độ dài cạnh bên CD của hình thang ABCD trong Hình 4.24.

Đề bài

Tính độ dài cạnh bên CD của hình thang ABCD trong Hình 4.24.

Giải bài tập 4.9 trang 86 SGK Toán 9 tập 1 - Cùng khám phá 1

Phương pháp giải - Xem chi tiếtGiải bài tập 4.9 trang 86 SGK Toán 9 tập 1 - Cùng khám phá 2

+ Kẻ DK vuông góc với BC tại K.

+ Tam giác AHB vuông tại H nên \(AH = AB.\sin B\).

+ Chứng minh tứ giác AHKD là hình bình hành. Do đó, \(HK = AD = 10,DK = AH\).

+ Áp dụng định lí Pythagore vào tam giác DKC vuông tại K để tính CD.

Lời giải chi tiết

Giải bài tập 4.9 trang 86 SGK Toán 9 tập 1 - Cùng khám phá 3

Kẻ DK vuông góc với BC tại K.

\(\Delta \)AHB vuông tại H nên

\(AH = AB.\sin B = 9.\sin {66^o} \approx 8,2\)

\(BH = AB.\cos B = 9.\cos {66^o} \approx 3,7\)

Tứ giác AHKD có: AD//HK (gt), AH//DK (cùng vuông góc với BC) nên tứ giác AHKD là hình bình hành. Do đó, \(HK = AD = 10,DK = AH \approx 8,2\).

Độ dài đoạn thẳng KC là:

\(KC = BC - BH - HK \approx 21 - 3,7 - 10 = 7,3\)

\(\Delta \)DKC vuông tại K nên

\(D{C^2} = D{K^2} + K{C^2} \approx 8,{2^2} + {7,3^2} = 120,53\) (Định lí Pythagore) nên \(DC \approx 11\).

Làm chủ Toán 9, tự tin vào phòng thi! Đừng bỏ lỡ Giải bài tập 4.9 trang 86 SGK Toán 9 tập 1 - Cùng khám phá đặc sắc thuộc chuyên mục toán lớp 9 trên nền tảng đề thi toán. Với bộ bài tập toán trung học cơ sở được biên soạn chuyên sâu, bám sát cấu trúc đề thi và chương trình sách giáo khoa mới nhất, đây chính là công cụ đắc lực giúp các em tối ưu hóa ôn luyện, củng cố kiến thức vững chắc và thuần thục mọi dạng bài thi khó nhằn. Phương pháp học trực quan, khoa học sẽ mang lại hiệu quả vượt trội, giúp con bạn chinh phục mọi thử thách một cách dễ dàng.

Giải bài tập 4.9 trang 86 SGK Toán 9 tập 1: Phương pháp và Lời giải Chi Tiết

Bài tập 4.9 trang 86 SGK Toán 9 tập 1 yêu cầu chúng ta xét hàm số y = (m-2)x + 3. Để hàm số này là hàm số bậc nhất, điều kiện cần và đủ là hệ số của x khác 0, tức là m - 2 ≠ 0. Bài viết này sẽ đi sâu vào phân tích điều kiện này và cách xác định giá trị của m để đảm bảo hàm số thỏa mãn yêu cầu.

1. Điều kiện để hàm số là hàm số bậc nhất

Hàm số y = ax + b được gọi là hàm số bậc nhất khi và chỉ khi a ≠ 0. Trong trường hợp của bài tập này, a = m - 2. Do đó, để y = (m-2)x + 3 là hàm số bậc nhất, chúng ta cần có:

m - 2 ≠ 0

Giải bất phương trình này, ta được:

m ≠ 2

2. Phân tích và Giải thích chi tiết

Khi m = 2, hàm số trở thành y = (2-2)x + 3 = 0x + 3 = 3. Đây là một hàm số hằng, không phải là hàm số bậc nhất. Do đó, việc loại trừ giá trị m = 2 là rất quan trọng để đảm bảo tính chất bậc nhất của hàm số.

3. Ví dụ minh họa

Xét các trường hợp sau:

  • Trường hợp 1: m = 3
  • Hàm số trở thành y = (3-2)x + 3 = x + 3. Đây là hàm số bậc nhất với hệ số góc là 1.

  • Trường hợp 2: m = 0
  • Hàm số trở thành y = (0-2)x + 3 = -2x + 3. Đây là hàm số bậc nhất với hệ số góc là -2.

  • Trường hợp 3: m = 2
  • Hàm số trở thành y = (2-2)x + 3 = 3. Đây là hàm số hằng, không phải hàm số bậc nhất.

4. Mở rộng kiến thức: Ứng dụng của hàm số bậc nhất

Hàm số bậc nhất có rất nhiều ứng dụng trong thực tế, ví dụ như:

  • Tính toán chi phí: Chi phí sản xuất một sản phẩm có thể được biểu diễn bằng một hàm số bậc nhất, trong đó x là số lượng sản phẩm và y là chi phí.
  • Dự báo doanh thu: Doanh thu bán hàng có thể được dự báo bằng một hàm số bậc nhất, trong đó x là số lượng sản phẩm bán ra và y là doanh thu.
  • Mô tả chuyển động: Vận tốc của một vật thể chuyển động đều có thể được biểu diễn bằng một hàm số bậc nhất, trong đó x là thời gian và y là quãng đường đi được.

5. Bài tập tương tự

Để củng cố kiến thức, các em có thể tự giải các bài tập tương tự sau:

  1. Xác định giá trị của m để hàm số y = (m+1)x - 2 là hàm số bậc nhất.
  2. Tìm điều kiện của m để hàm số y = (2m-1)x + 5 là hàm số bậc nhất.

6. Kết luận

Bài tập 4.9 trang 86 SGK Toán 9 tập 1 là một bài tập cơ bản nhưng quan trọng để hiểu rõ điều kiện của hàm số bậc nhất. Việc nắm vững kiến thức này sẽ giúp các em giải quyết các bài tập phức tạp hơn trong chương trình học.

Hy vọng bài giải chi tiết này sẽ giúp các em hiểu rõ hơn về bài tập 4.9 trang 86 SGK Toán 9 tập 1. Chúc các em học tập tốt!

Tài liệu, đề thi và đáp án Toán 9