Chào mừng các em học sinh đến với bài giải bài tập 3.18 trang 65 SGK Toán 9 tập 1 trên giaitoan.edu.vn. Bài tập này thuộc chương Hàm số bậc nhất và là một phần quan trọng trong việc củng cố kiến thức về hàm số.
Chúng tôi cung cấp lời giải chi tiết, dễ hiểu, giúp các em nắm vững phương pháp giải và áp dụng vào các bài tập tương tự.
Sắp xếp các số sau theo thứ tự tăng dần: a) \(8\sqrt 3 ,4\sqrt 7 ,5\sqrt 6 \) và \(9\sqrt 2 \); b) \(6\sqrt 3 ,\sqrt {48} ,3\sqrt 7 \) và \(2\sqrt {11} \).
Đề bài
Sắp xếp các số sau theo thứ tự tăng dần:
a) \(8\sqrt 3 ,4\sqrt 7 ,5\sqrt 6 \) và \(9\sqrt 2 \);
b) \(6\sqrt 3 ,\sqrt {48} ,3\sqrt 7 \) và \(2\sqrt {11} \).
Phương pháp giải - Xem chi tiết
+ Sử dụng công thức \(a\sqrt b = \sqrt {{a^2}b} \) khi \(a \ge 0,b \ge 0\) để đưa các thừa số vào trong dấu căn.
+ So sánh các căn thức vừa biến đổi được và rút ra kết luận.
Lời giải chi tiết
a) Ta có: \(8\sqrt 3 = \sqrt {{8^2}.3} = \sqrt {192} \); \(4\sqrt 7 = \sqrt {{4^2}.7} = \sqrt {112} \); \(5\sqrt 6 = \sqrt {{5^2}.6} = \sqrt {150} \); \(9\sqrt 2 = \sqrt {{9^2}.2} = \sqrt {162} \)
Vì \(\sqrt {112} < \sqrt {150} < \sqrt {162} < \sqrt {192} \) nên các số trên được sắp xếp theo thứ tự tăng dần là: \(4\sqrt 7 ;5\sqrt 6 ;9\sqrt 2 ;8\sqrt 3 \).
b) Ta có: \(6\sqrt 3 = \sqrt {{6^2}.3} = \sqrt {108} \); \(\sqrt {48} \); \(3\sqrt 7 = \sqrt {{3^2}.7} = \sqrt {63} \); \(2\sqrt {11} = \sqrt {{2^2}.11} = \sqrt {44} \)
Vì \(\sqrt {44} < \sqrt {48} < \sqrt {63} < \sqrt {108} \) nên các số trên được sắp xếp theo thứ tự tăng dần là: \(2\sqrt {11} ,\sqrt {48} ,3\sqrt 7 ,6\sqrt 3 \).
Bài tập 3.18 trang 65 SGK Toán 9 tập 1 yêu cầu chúng ta xét hàm số y = (m-2)x + 3. Để hàm số này là hàm số bậc nhất, hệ số m-2 phải khác 0. Bài toán này thường xuất hiện trong các bài kiểm tra và thi học kỳ, đòi hỏi học sinh phải nắm vững định nghĩa và điều kiện của hàm số bậc nhất.
Hàm số y = ax + b được gọi là hàm số bậc nhất khi và chỉ khi a ≠ 0. Trong trường hợp của bài tập này, a = m-2. Do đó, để y = (m-2)x + 3 là hàm số bậc nhất, chúng ta cần có m-2 ≠ 0, tức là m ≠ 2.
Để hàm số y = (m-2)x + 3 là hàm số bậc nhất, ta cần tìm giá trị của m sao cho m-2 ≠ 0. Điều này có nghĩa là m ≠ 2.
Vậy, với mọi giá trị của m khác 2, hàm số y = (m-2)x + 3 là hàm số bậc nhất.
Ví dụ 1: Nếu m = 1, thì hàm số trở thành y = (1-2)x + 3 = -x + 3. Đây là hàm số bậc nhất vì hệ số của x là -1 ≠ 0.
Ví dụ 2: Nếu m = 3, thì hàm số trở thành y = (3-2)x + 3 = x + 3. Đây cũng là hàm số bậc nhất vì hệ số của x là 1 ≠ 0.
Ví dụ 3: Nếu m = 2, thì hàm số trở thành y = (2-2)x + 3 = 0x + 3 = 3. Đây không phải là hàm số bậc nhất vì hệ số của x là 0.
Hàm số bậc nhất có dạng y = ax + b, trong đó a và b là các số thực, a ≠ 0. Đồ thị của hàm số bậc nhất là một đường thẳng.
Để củng cố kiến thức về hàm số bậc nhất, các em có thể làm thêm các bài tập sau:
Khi giải các bài tập về hàm số bậc nhất, các em cần:
Bài tập 3.18 trang 65 SGK Toán 9 tập 1 là một bài tập cơ bản về hàm số bậc nhất. Việc nắm vững kiến thức và phương pháp giải bài tập này sẽ giúp các em tự tin hơn khi làm các bài tập và bài kiểm tra về chủ đề này.
Hy vọng với lời giải chi tiết và các ví dụ minh họa trên, các em đã hiểu rõ cách giải bài tập 3.18 trang 65 SGK Toán 9 tập 1. Chúc các em học tập tốt!
Giá trị của m | Hàm số | Kết luận |
---|---|---|
1 | y = -x + 3 | Hàm số bậc nhất |
2 | y = 3 | Không phải hàm số bậc nhất |
3 | y = x + 3 | Hàm số bậc nhất |