Logo Header
  1. Môn Toán
  2. Giải bài tập 1.24 trang 24 SGK Toán 9 tập 1 - Cùng khám phá

Giải bài tập 1.24 trang 24 SGK Toán 9 tập 1 - Cùng khám phá

Giải bài tập 1.24 trang 24 SGK Toán 9 tập 1

Chào mừng các em học sinh đến với bài giải bài tập 1.24 trang 24 SGK Toán 9 tập 1 trên giaitoan.edu.vn. Bài tập này thuộc chương Hàm số bậc nhất, một trong những kiến thức quan trọng của chương trình Toán 9.

Chúng tôi cung cấp lời giải chi tiết, dễ hiểu, giúp các em nắm vững kiến thức và kỹ năng giải toán. Hãy cùng khám phá cách giải bài tập này một cách hiệu quả nhất!

Giải các hệ phương trình sau bằng phương pháp cộng hoặc phương pháp thế: a) \(\left\{ \begin{array}{l}3x + 4y = 8\\2x - 5y = - 10\end{array} \right.\); b) \(\left\{ \begin{array}{l}9x - 11y = 6\\3x + y = 4\end{array} \right.\); c) \(\left\{ \begin{array}{l} - 0,4x + 0,5y = - 6\\1,2x - 1,8y = 21\end{array} \right.\); d) \(\left\{ \begin{array}{l}2x - 6y = 14\\ - x + 3y = - 7\end{array} \right.\).

Đề bài

Giải các hệ phương trình sau bằng phương pháp cộng hoặc phương pháp thế:

a) \(\left\{ \begin{array}{l}3x + 4y = 8\\2x - 5y = - 10\end{array} \right.\);

b) \(\left\{ \begin{array}{l}9x - 11y = 6\\3x + y = 4\end{array} \right.\);

c) \(\left\{ \begin{array}{l} - 0,4x + 0,5y = - 6\\1,2x - 1,8y = 21\end{array} \right.\);

d) \(\left\{ \begin{array}{l}2x - 6y = 14\\ - x + 3y = - 7\end{array} \right.\).

Phương pháp giải - Xem chi tiếtGiải bài tập 1.24 trang 24 SGK Toán 9 tập 1 - Cùng khám phá 1

Dựa vào hai cách giải hệ phương trình để làm bài toán.

Lời giải chi tiết

a) \(\left\{ \begin{array}{l}3x + 4y = 8\\2x - 5y = - 10\end{array} \right.\).

Nhân hai vế của phương trình thứ nhất với 2 và hai vế của phương trình thứ hai với 3, ta thu được hệ sau: \(\left\{ \begin{array}{l}6x + 8y = 16\\6x - 15y = - 30\end{array} \right.\).

Trừ từng vế hai phương trình của hệ trên, ta được:

\(\begin{array}{l}\left( {6x + 8y} \right) - \left( {6x - 15y} \right) = 16 - \left( { - 30} \right)\\6x + 8y - 6x + 15y = 46\\23y = 46\\y = 2.\end{array}\)

Thay \(y = 2\) vào phương trình \(3x + 4y = 8\), ta có:

\(\begin{array}{l}3x + 4.2 = 8\\x = 0.\end{array}\)

Vậy hệ đã cho có nghiệm duy nhất là \(\left( {0;2} \right)\).

b) \(\left\{ \begin{array}{l}9x - 11y = 6\\3x + y = 4\end{array} \right.\).

Nhân hai vế của phương trình thứ hai với 3, ta thu được hệ sau:

\(\left\{ \begin{array}{l}9x - 11y = 6\\9x + 3y = 12\end{array} \right.\).

Trừ từng vế hai phương trình của hệ trên, ta được:

\(\begin{array}{l}\left( {9x - 11y} \right) - \left( {9x + 3y} \right) = 6 - 12\\9x - 11y - 9x - 3y = - 6\\ - 14y = - 6\\y = \frac{3}{7}.\end{array}\)

Thay \(y = \frac{3}{7}\) vào phương trình \(3x + y = 4\), ta có:

\(\begin{array}{l}3x + \frac{3}{7} = 4\\x = \frac{{25}}{{21}}.\end{array}\)

Vậy hệ đã cho có nghiệm duy nhất là \(\left( {\frac{{25}}{{21}};\frac{3}{7}} \right)\).

c) \(\left\{ \begin{array}{l} - 0,4x + 0,5y = - 6\\1,2x - 1,8y = 21\end{array} \right.\).

Nhân hai vế của phương trình thứ nhất với 3, ta thu được hệ sau:

\(\left\{ \begin{array}{l} - 1,2x + 1,5y = - 18\\1,2x - 1,8y = 21\end{array} \right.\).

Cộng từng vế hai phương trình của hệ trên, ta được:

\(\begin{array}{l}\left( { - 1,2x + 1,5y} \right) + \left( {1,2x - 1,8y} \right) = - 18 + 21\\ - 1,2x + 1,5y + 1,2x - 1,8y = 3\\ - 0,3y = 3\\y = - 10.\end{array}\)

Thay \(y = - 10\) vào phương trình \( - 0,4x + 0,5y = - 6\), ta có:

\(\begin{array}{l} - 0,4x + 0,5.\left( { - 10} \right) = - 6\\ - 0,4x - 0,5 = - 6\\x = \frac{5}{2}.\end{array}\)

Vậy hệ đã cho có nghiệm duy nhất \(\left( {\frac{5}{2}; - 10} \right)\).

d) \(\left\{ \begin{array}{l}2x - 6y = 14\\ - x + 3y = - 7\end{array} \right.\).

Nhân hai vế của phương trình thứ hai với 2, ta thu được hệ sau:

\(\left\{ \begin{array}{l}2x - 6y = 14\\ - 2x + 6y = - 14\end{array} \right.\).

Cộng từng vế hai phương trình của hệ trên, ta được:

\(\begin{array}{l}\left( {2x - 6y} \right) + \left( { - 2x + 6y} \right) = 14 + \left( { - 14} \right)\\2x - 6y - 2x + 6y = 0\\0y = 0.\end{array}\)

Vậy hệ đã cho có vô số nghiệm \(\left( {x;y} \right)\) với \(\left\{ \begin{array}{l}y \in \mathbb{R}\\x = 3y + 7\end{array} \right.\).

Làm chủ Toán 9, tự tin vào phòng thi! Đừng bỏ lỡ Giải bài tập 1.24 trang 24 SGK Toán 9 tập 1 - Cùng khám phá đặc sắc thuộc chuyên mục giải bài tập toán 9 trên nền tảng môn toán. Với bộ bài tập toán thcs được biên soạn chuyên sâu, bám sát cấu trúc đề thi và chương trình sách giáo khoa mới nhất, đây chính là công cụ đắc lực giúp các em tối ưu hóa ôn luyện, củng cố kiến thức vững chắc và thuần thục mọi dạng bài thi khó nhằn. Phương pháp học trực quan, khoa học sẽ mang lại hiệu quả vượt trội, giúp con bạn chinh phục mọi thử thách một cách dễ dàng.

Giải bài tập 1.24 trang 24 SGK Toán 9 tập 1: Phương pháp tiếp cận và lời giải chi tiết

Bài tập 1.24 trang 24 SGK Toán 9 tập 1 yêu cầu chúng ta vận dụng kiến thức về hàm số bậc nhất để xác định hệ số góc và điểm thuộc đồ thị hàm số. Để giải bài tập này một cách hiệu quả, chúng ta cần nắm vững các khái niệm cơ bản sau:

  • Hàm số bậc nhất: Hàm số có dạng y = ax + b, trong đó a và b là các số thực, a ≠ 0.
  • Hệ số góc: a là hệ số góc của đường thẳng biểu diễn hàm số.
  • Điểm thuộc đồ thị hàm số: Một điểm (x0; y0) thuộc đồ thị hàm số y = ax + b nếu y0 = ax0 + b.

Phân tích đề bài và xác định yêu cầu

Trước khi bắt đầu giải bài tập, chúng ta cần đọc kỹ đề bài và xác định rõ yêu cầu của bài toán. Thông thường, bài tập sẽ yêu cầu chúng ta:

  1. Xác định hệ số góc của hàm số.
  2. Xác định điểm thuộc đồ thị hàm số.
  3. Viết phương trình đường thẳng đi qua hai điểm cho trước.

Lời giải chi tiết bài tập 1.24 trang 24 SGK Toán 9 tập 1

Để minh họa, giả sử bài tập 1.24 yêu cầu xác định hệ số góc của hàm số y = 2x - 3 và kiểm tra xem điểm A(1; -1) có thuộc đồ thị hàm số hay không.

Bước 1: Xác định hệ số góc

Hàm số y = 2x - 3 có dạng y = ax + b, với a = 2 và b = -3. Vậy hệ số góc của hàm số là a = 2.

Bước 2: Kiểm tra điểm A(1; -1) có thuộc đồ thị hàm số hay không

Để kiểm tra, chúng ta thay tọa độ điểm A(1; -1) vào phương trình hàm số:

-1 = 2 * 1 - 3

-1 = 2 - 3

-1 = -1

Vì phương trình đúng, nên điểm A(1; -1) thuộc đồ thị hàm số y = 2x - 3.

Các dạng bài tập tương tự và phương pháp giải

Ngoài bài tập 1.24, còn rất nhiều bài tập tương tự trong chương Hàm số bậc nhất. Dưới đây là một số dạng bài tập thường gặp và phương pháp giải:

  • Bài tập về xác định hàm số khi biết hai điểm thuộc đồ thị: Sử dụng phương pháp thay tọa độ hai điểm vào phương trình y = ax + b để tìm a và b.
  • Bài tập về tìm giao điểm của hai đường thẳng: Giải hệ phương trình hai ẩn để tìm tọa độ giao điểm.
  • Bài tập về ứng dụng hàm số bậc nhất vào thực tế: Phân tích bài toán thực tế và xây dựng mô hình toán học bằng hàm số bậc nhất.

Luyện tập và củng cố kiến thức

Để nắm vững kiến thức về hàm số bậc nhất, các em nên luyện tập thường xuyên các bài tập khác nhau. Các em có thể tìm thấy nhiều bài tập luyện tập trên giaitoan.edu.vn và các trang web học toán online khác.

Kết luận

Bài tập 1.24 trang 24 SGK Toán 9 tập 1 là một bài tập cơ bản về hàm số bậc nhất. Việc nắm vững kiến thức và kỹ năng giải bài tập này sẽ giúp các em học tốt môn Toán 9 và chuẩn bị cho các kỳ thi quan trọng.

Bảng tổng hợp các công thức liên quan

Công thứcMô tả
y = ax + bPhương trình hàm số bậc nhất
aHệ số góc
bTung độ gốc

Tài liệu, đề thi và đáp án Toán 9