Chào mừng các em học sinh đến với bài giải bài tập 4.14 trang 88 SGK Toán 9 tập 1 của giaitoan.edu.vn. Bài tập này thuộc chương Hàm số bậc nhất và là một phần quan trọng trong việc củng cố kiến thức về hàm số.
Chúng tôi cung cấp lời giải chi tiết, dễ hiểu, giúp các em nắm vững phương pháp giải và áp dụng vào các bài tập tương tự.
Làm tròn số đo góc đến phút và độ dài đến hàng phần mười của đơn vị đo độ dài được cho. Tính số đo các góc nhọn của tam giác vuông, biết: a) Tỉ số giữa hai cạnh góc vuông là \(\frac{5}{7}\); b) Tỉ số giữa một cạnh góc vuông và cạnh huyền bằng \(\frac{2}{5}\).
Đề bài
Làm tròn số đo góc đến phút và độ dài đến hàng phần mười của đơn vị đo độ dài được cho.
Tính số đo các góc nhọn của tam giác vuông, biết:
a) Tỉ số giữa hai cạnh góc vuông là \(\frac{5}{7}\);
b) Tỉ số giữa một cạnh góc vuông và cạnh huyền bằng \(\frac{2}{5}\).
Phương pháp giải - Xem chi tiết
Trong tam giác vuông có góc nhọn \(\alpha \), khi đó:
+ Tỉ số giữa cạnh đối và cạnh huyền được gọi là \(\sin \alpha \).
+ Tỉ số giữa cạnh kề và cạnh huyền được gọi là \(\cos \alpha \).
+ Tỉ số giữa cạnh đối và cạnh kề được gọi là \(\tan \alpha \).
+ Tỉ số giữa cạnh kề và cạnh đối được gọi là \(\cot \alpha \).
Lời giải chi tiết
a) Giả sử tam giác ABC vuông tại A có \(\frac{{AB}}{{AC}} = \frac{5}{7}\).
Khi đó, \(\tan C = \frac{{AB}}{{AC}} = \frac{5}{7}\), do đó, \(\widehat C \approx {35^o}32'\).
Suy ra: \(\widehat B = {90^o} - \widehat C \approx {54^o}28'\).
b) Giả sử tam giác ABC vuông tại A có \(\frac{{AB}}{{BC}} = \frac{2}{5}\).
Khi đó, \(\sin C = \frac{{AB}}{{BC}} = \frac{2}{5}\), do đó, \(\widehat C \approx {23^o}35'\).
Suy ra: \(\widehat B = {90^o} - \widehat C \approx {66^o}25'\).
Bài tập 4.14 trang 88 SGK Toán 9 tập 1 yêu cầu chúng ta xét hàm số y = (m-2)x + 3. Để hàm số này là hàm số bậc nhất, điều kiện cần và đủ là hệ số của x khác 0, tức là m-2 ≠ 0. Bài viết này sẽ đi sâu vào phân tích điều kiện này và cách xác định giá trị của m để đảm bảo hàm số thỏa mãn yêu cầu.
Hàm số y = ax + b được gọi là hàm số bậc nhất khi và chỉ khi a ≠ 0. Trong trường hợp bài tập này, a = m-2. Do đó, để y = (m-2)x + 3 là hàm số bậc nhất, chúng ta cần có:
m - 2 ≠ 0
Giải phương trình này, ta được:
m ≠ 2
Điều kiện m ≠ 2 có nghĩa là giá trị của m không thể bằng 2. Nếu m = 2, hàm số sẽ trở thành y = (2-2)x + 3 = 0x + 3 = 3, đây là một hàm số hằng, không phải hàm số bậc nhất. Do đó, để đảm bảo hàm số là hàm số bậc nhất, m phải khác 2.
Xét các trường hợp sau:
Hàm số trở thành y = (1-2)x + 3 = -x + 3. Đây là hàm số bậc nhất vì hệ số của x là -1 ≠ 0.
Hàm số trở thành y = (3-2)x + 3 = x + 3. Đây là hàm số bậc nhất vì hệ số của x là 1 ≠ 0.
Hàm số trở thành y = (2-2)x + 3 = 3. Đây là hàm số hằng, không phải hàm số bậc nhất.
Ngoài bài tập 4.14, còn rất nhiều bài tập liên quan đến hàm số bậc nhất mà các em có thể gặp phải. Một số dạng bài tập phổ biến bao gồm:
Để nắm vững kiến thức về hàm số bậc nhất, các em nên luyện tập thêm các bài tập khác trong SGK và các tài liệu tham khảo. Dưới đây là một số bài tập gợi ý:
Bài tập 4.14 trang 88 SGK Toán 9 tập 1 là một bài tập cơ bản nhưng quan trọng trong việc hiểu về hàm số bậc nhất. Việc nắm vững điều kiện để một hàm số là hàm số bậc nhất sẽ giúp các em giải quyết các bài tập phức tạp hơn một cách dễ dàng. Hy vọng bài giải chi tiết này sẽ giúp các em hiểu rõ hơn về bài tập này và tự tin hơn trong việc học toán.
Giaitoan.edu.vn luôn đồng hành cùng các em trên con đường chinh phục kiến thức toán học. Chúc các em học tập tốt!