Chào mừng các em học sinh đến với bài giải bài tập 6.13 trang 14 SGK Toán 9 tập 2 trên giaitoan.edu.vn. Bài tập này thuộc chương Hàm số bậc nhất và ứng dụng, một trong những chương quan trọng của Toán 9.
Chúng tôi sẽ cung cấp lời giải chi tiết, dễ hiểu, giúp các em nắm vững kiến thức và kỹ năng giải toán. Đồng thời, chúng tôi cũng sẽ phân tích các bước giải, các lưu ý quan trọng để các em có thể tự giải các bài tập tương tự.
Lượng nhiên liệu tiêu thụ y (l/100 km) của một số loại ô tô phụ thuộc vào tốc độ di chuyển x (km/h) theo hàm số \(y = \frac{1}{{320}}{x^2} - \frac{3}{8}x + \frac{{73}}{4}\) với \(20 \le x \le 140\). Hỏi ô tô đi với tốc độ nào thì lượng nhiên liệu tiêu thụ là 7 l/100 km?
Đề bài
Lượng nhiên liệu tiêu thụ y (l/100 km) của một số loại ô tô phụ thuộc vào tốc độ di chuyển x (km/h) theo hàm số \(y = \frac{1}{{320}}{x^2} - \frac{3}{8}x + \frac{{73}}{4}\) với \(20 \le x \le 140\). Hỏi ô tô đi với tốc độ nào thì lượng nhiên liệu tiêu thụ là 7 l/100 km?
Phương pháp giải - Xem chi tiết
Thay y = 7 vào phương trình rồi giải phương trình.
Dựa vào: Cho phương trình \(a{x^2} + bx + c = 0(a \ne 0)\) và biệt thức \(\Delta = {b^2} - 4ac\).
- Nếu \(\Delta \)> 0 thì phương trình có hai nghiệm phân biệt:
\({x_1} = \frac{{ - b + \sqrt \Delta }}{{2a}},{x_2} = \frac{{ - b - \sqrt \Delta }}{{2a}}\);
- Nếu \(\Delta \) = 0 thì phương trình có nghiệm kép \({x_1} = {x_2} = - \frac{b}{{2a}}\);
- Nếu \(\Delta \) < 0 thì phương trình vô nghiệm.
Lời giải chi tiết
Thay y = 7 vào phương trình \(y = \frac{1}{{320}}{x^2} - \frac{3}{8}x + \frac{{73}}{4}\), ta có:
\(\begin{array}{l}\frac{1}{{320}}{x^2} - \frac{3}{8}x + \frac{{73}}{4} = 7\\\frac{1}{{320}}{x^2} - \frac{3}{8}x + \frac{{45}}{4} = 0\end{array}\)
Ta có \(\Delta = {\left( {\frac{{ - 3}}{8}} \right)^2} - 4.\left( {\frac{1}{{320}}} \right).\left( {\frac{{45}}{4}} \right) = 0\)
Phương trình có nghiệm kép \({x_1} = {x_2} = 60\)
Vậy ô tô đi với tốc độ 60 (km/h) thì lượng nhiên liệu tiêu thụ là 7l/100 km.
Bài tập 6.13 trang 14 SGK Toán 9 tập 2 yêu cầu chúng ta giải một bài toán liên quan đến hàm số bậc nhất. Để giải bài tập này một cách hiệu quả, chúng ta cần nắm vững các kiến thức cơ bản về hàm số bậc nhất, bao gồm:
Trước khi bắt tay vào giải bài tập, chúng ta cần đọc kỹ đề bài và xác định rõ yêu cầu của bài toán. Điều này giúp chúng ta lựa chọn phương pháp giải phù hợp và tránh sai sót không đáng có.
Thông thường, các bài tập về hàm số bậc nhất yêu cầu chúng ta thực hiện các công việc sau:
(Ở đây sẽ là lời giải chi tiết của bài tập 6.13, bao gồm các bước giải, giải thích rõ ràng và các lưu ý quan trọng. Ví dụ:)
Đề bài: Cho hàm số y = 2x - 3. Tìm x sao cho y = 5.
Lời giải:
Ngoài bài tập 6.13, còn rất nhiều bài tập tương tự về hàm số bậc nhất. Để giải các bài tập này, chúng ta có thể áp dụng các phương pháp sau:
Để củng cố kiến thức và kỹ năng giải bài tập về hàm số bậc nhất, các em có thể tự giải thêm các bài tập sau:
Bài tập 6.13 trang 14 SGK Toán 9 tập 2 là một bài tập cơ bản về hàm số bậc nhất. Hy vọng rằng, với lời giải chi tiết và các phương pháp giải đã trình bày, các em có thể tự tin giải bài tập này và các bài tập tương tự. Chúc các em học tập tốt!
Khái niệm | Giải thích |
---|---|
Hàm số bậc nhất | y = ax + b (a ≠ 0) |
Hệ số a | Xác định độ dốc của đường thẳng |
Hệ số b | Xác định giao điểm của đường thẳng với trục Oy |