Chào mừng các em học sinh đến với chuyên mục giải bài tập Toán 9 tại giaitoan.edu.vn. Trong bài viết này, chúng ta sẽ cùng nhau giải chi tiết các bài tập trong mục 5 trang 62, 63, 64 sách giáo khoa Toán 9 tập 1.
Mục tiêu của chúng ta là không chỉ tìm ra đáp án đúng mà còn hiểu rõ phương pháp giải, từ đó áp dụng vào các bài tập tương tự một cách hiệu quả.
a) Nhân cả tử và mẫu của biểu thức \(\frac{4}{{3\sqrt 2 }}\) với \(\sqrt 2 \) rồi biến đổi biểu thức đó về dạng không còn căn thức ở mẫu. b) Nhân cả tử và mẫu của biểu thức \(\frac{5}{{\sqrt 2 + 1}}\) với \(\sqrt 2 - 1\) rồi biến đổi biểu thức đó về dạng không còn căn thức ở mẫu. c) Nhân cả tử và mẫu của biểu thức \(\frac{6}{{\sqrt 5 - \sqrt 2 }}\) với \(\sqrt 5 + \sqrt 2 \) rồi biến đổi biểu thức đó về dạng không còn căn thức ở mẫu.
Trả lời câu hỏi Hoạt động 5 trang 62 SGK Toán 9 Cùng khám phá
a) Nhân cả tử và mẫu của biểu thức \(\frac{4}{{3\sqrt 2 }}\) với \(\sqrt 2 \) rồi biến đổi biểu thức đó về dạng không còn căn thức ở mẫu.
b) Nhân cả tử và mẫu của biểu thức \(\frac{5}{{\sqrt 2 + 1}}\) với \(\sqrt 2 - 1\) rồi biến đổi biểu thức đó về dạng không còn căn thức ở mẫu.
c) Nhân cả tử và mẫu của biểu thức \(\frac{6}{{\sqrt 5 - \sqrt 2 }}\) với \(\sqrt 5 + \sqrt 2 \) rồi biến đổi biểu thức đó về dạng không còn căn thức ở mẫu.
Phương pháp giải:
Với hai biểu thức A và B không âm, ta có: \(\sqrt {A.B} = \sqrt A .\sqrt B \).
Lời giải chi tiết:
a) \(\frac{{4\sqrt 2 }}{{3\sqrt 2 .\sqrt 2 }}\)\( = \frac{{4\sqrt 2 }}{{3.2}}\)\( = \frac{{2\sqrt 2 }}{3}\).
b) \(\frac{{5\left( {\sqrt 2 - 1} \right)}}{{\left( {\sqrt 2 + 1} \right)\left( {\sqrt 2 - 1} \right)}}\)\( = \frac{{5\left( {\sqrt 2 - 1} \right)}}{{{{\left( {\sqrt 2 } \right)}^2} - {1^2}}}\)\( = \frac{{5\left( {\sqrt 2 - 1} \right)}}{{2 - 1}}\)\( = 5\left( {\sqrt 2 - 1} \right)\).
c) \(\frac{{6\left( {\sqrt 5 + \sqrt 2 } \right)}}{{\left( {\sqrt 5 - \sqrt 2 } \right)\left( {\sqrt 5 + \sqrt 2 } \right)}}\)\( = \frac{{6\left( {\sqrt 5 + \sqrt 2 } \right)}}{{{{\left( {\sqrt 5 } \right)}^2} - {{\left( {\sqrt 2 } \right)}^2}}}\)\( = \frac{{6\left( {\sqrt 5 + \sqrt 2 } \right)}}{{5 - 2}}\)\( = 2\left( {\sqrt 5 + \sqrt 2 } \right)\).
Trả lời câu hỏi Hoạt động 5 trang 62 SGK Toán 9 Cùng khám phá
a) Nhân cả tử và mẫu của biểu thức \(\frac{4}{{3\sqrt 2 }}\) với \(\sqrt 2 \) rồi biến đổi biểu thức đó về dạng không còn căn thức ở mẫu.
b) Nhân cả tử và mẫu của biểu thức \(\frac{5}{{\sqrt 2 + 1}}\) với \(\sqrt 2 - 1\) rồi biến đổi biểu thức đó về dạng không còn căn thức ở mẫu.
c) Nhân cả tử và mẫu của biểu thức \(\frac{6}{{\sqrt 5 - \sqrt 2 }}\) với \(\sqrt 5 + \sqrt 2 \) rồi biến đổi biểu thức đó về dạng không còn căn thức ở mẫu.
Phương pháp giải:
Với hai biểu thức A và B không âm, ta có: \(\sqrt {A.B} = \sqrt A .\sqrt B \).
Lời giải chi tiết:
a) \(\frac{{4\sqrt 2 }}{{3\sqrt 2 .\sqrt 2 }}\)\( = \frac{{4\sqrt 2 }}{{3.2}}\)\( = \frac{{2\sqrt 2 }}{3}\).
b) \(\frac{{5\left( {\sqrt 2 - 1} \right)}}{{\left( {\sqrt 2 + 1} \right)\left( {\sqrt 2 - 1} \right)}}\)\( = \frac{{5\left( {\sqrt 2 - 1} \right)}}{{{{\left( {\sqrt 2 } \right)}^2} - {1^2}}}\)\( = \frac{{5\left( {\sqrt 2 - 1} \right)}}{{2 - 1}}\)\( = 5\left( {\sqrt 2 - 1} \right)\).
c) \(\frac{{6\left( {\sqrt 5 + \sqrt 2 } \right)}}{{\left( {\sqrt 5 - \sqrt 2 } \right)\left( {\sqrt 5 + \sqrt 2 } \right)}}\)\( = \frac{{6\left( {\sqrt 5 + \sqrt 2 } \right)}}{{{{\left( {\sqrt 5 } \right)}^2} - {{\left( {\sqrt 2 } \right)}^2}}}\)\( = \frac{{6\left( {\sqrt 5 + \sqrt 2 } \right)}}{{5 - 2}}\)\( = 2\left( {\sqrt 5 + \sqrt 2 } \right)\).
Trả lời câu hỏi Luyện tập 5 trang 64SGK Toán 9 Cùng khám phá
Trục căn thức ở mẫu (với giả thiết các biểu thức đều có nghĩa):
a) \(\frac{6}{{\sqrt x }}\);
b) \(\frac{{\sqrt y }}{{1 + \sqrt y }}\);
c) \(\frac{{x\left( {x - y} \right)}}{{\sqrt x - \sqrt y }}\).
Phương pháp giải:
a) Với các biểu thức A, B mà \(B > 0\), ta có: \(\frac{A}{{\sqrt B }} = \frac{{A\sqrt B }}{B}\).
b) Với các biểu thức A, B, C mà \(A \ge 0\) và \(A \ne {B^2}\), ta có: \(\frac{C}{{\sqrt A + B}} = \frac{{C\left( {\sqrt A - B} \right)}}{{A - {B^2}}}\).
c) Với các biểu thức A, B, C mà \(A \ge 0,B \ge 0\) và \(A \ne B\), ta có: \(\frac{C}{{\sqrt A - \sqrt B }} = \frac{{C\left( {\sqrt A + \sqrt B } \right)}}{{A - B}}\).
Lời giải chi tiết:
a) \(\frac{6}{{\sqrt x }} = \frac{{6\sqrt x }}{x}\);
b) \(\frac{{\sqrt y }}{{1 + \sqrt y }} = \frac{{\sqrt y \left( {1 - \sqrt y } \right)}}{{1 - y}}\);
c) \(\frac{{x\left( {x - y} \right)}}{{\sqrt x - \sqrt y }} = \frac{{x\left( {x - y} \right)\left( {\sqrt x + \sqrt y } \right)}}{{x - y}} = x\left( {\sqrt x + \sqrt y } \right)\).
Trả lời câu hỏi Luyện tập 5 trang 64SGK Toán 9 Cùng khám phá
Trục căn thức ở mẫu (với giả thiết các biểu thức đều có nghĩa):
a) \(\frac{6}{{\sqrt x }}\);
b) \(\frac{{\sqrt y }}{{1 + \sqrt y }}\);
c) \(\frac{{x\left( {x - y} \right)}}{{\sqrt x - \sqrt y }}\).
Phương pháp giải:
a) Với các biểu thức A, B mà \(B > 0\), ta có: \(\frac{A}{{\sqrt B }} = \frac{{A\sqrt B }}{B}\).
b) Với các biểu thức A, B, C mà \(A \ge 0\) và \(A \ne {B^2}\), ta có: \(\frac{C}{{\sqrt A + B}} = \frac{{C\left( {\sqrt A - B} \right)}}{{A - {B^2}}}\).
c) Với các biểu thức A, B, C mà \(A \ge 0,B \ge 0\) và \(A \ne B\), ta có: \(\frac{C}{{\sqrt A - \sqrt B }} = \frac{{C\left( {\sqrt A + \sqrt B } \right)}}{{A - B}}\).
Lời giải chi tiết:
a) \(\frac{6}{{\sqrt x }} = \frac{{6\sqrt x }}{x}\);
b) \(\frac{{\sqrt y }}{{1 + \sqrt y }} = \frac{{\sqrt y \left( {1 - \sqrt y } \right)}}{{1 - y}}\);
c) \(\frac{{x\left( {x - y} \right)}}{{\sqrt x - \sqrt y }} = \frac{{x\left( {x - y} \right)\left( {\sqrt x + \sqrt y } \right)}}{{x - y}} = x\left( {\sqrt x + \sqrt y } \right)\).
Mục 5 của SGK Toán 9 tập 1 thường xoay quanh các chủ đề về hàm số bậc nhất, bao gồm định nghĩa, tính chất, đồ thị và ứng dụng của hàm số. Việc nắm vững kiến thức về hàm số bậc nhất là nền tảng quan trọng cho các chương trình học toán ở các lớp trên.
Bài tập này yêu cầu học sinh xác định các hệ số a, b trong hàm số y = ax + b dựa vào các thông tin cho trước, chẳng hạn như đồ thị, bảng giá trị hoặc các điểm thuộc đồ thị.
Ví dụ: Cho đồ thị hàm số đi qua các điểm A(0; 2) và B(1; 5). Hãy xác định hàm số bậc nhất.
Lời giải: Vì đồ thị đi qua A(0; 2) nên b = 2. Thay điểm B(1; 5) vào hàm số y = ax + 2, ta có: 5 = a * 1 + 2 => a = 3. Vậy hàm số bậc nhất là y = 3x + 2.
Bài tập này yêu cầu học sinh vẽ đồ thị của hàm số bậc nhất dựa vào các thông tin đã cho. Để vẽ đồ thị, ta cần xác định ít nhất hai điểm thuộc đồ thị, sau đó nối chúng lại bằng một đường thẳng.
Ví dụ: Vẽ đồ thị hàm số y = -2x + 1.
Lời giải: Chọn x = 0, ta có y = 1. Chọn x = 1, ta có y = -1. Vậy đồ thị đi qua các điểm A(0; 1) và B(1; -1). Nối hai điểm này lại, ta được đồ thị hàm số y = -2x + 1.
Bài tập này yêu cầu học sinh tìm tọa độ giao điểm của hai đường thẳng. Để tìm giao điểm, ta giải hệ phương trình bậc nhất hai ẩn, trong đó mỗi phương trình tương ứng với một đường thẳng.
Ví dụ: Tìm giao điểm của hai đường thẳng y = 2x - 1 và y = -x + 2.
Lời giải: Giải hệ phương trình:
Thay y = 2x - 1 vào phương trình thứ hai, ta có: 2x - 1 = -x + 2 => 3x = 3 => x = 1. Thay x = 1 vào phương trình y = 2x - 1, ta có: y = 2 * 1 - 1 = 1. Vậy giao điểm của hai đường thẳng là (1; 1).
Bài tập này yêu cầu học sinh vận dụng kiến thức về hàm số bậc nhất để giải các bài toán thực tế, chẳng hạn như tính quãng đường, thời gian, chi phí,...
Ví dụ: Một người đi xe máy với vận tốc 40km/h. Hãy viết hàm số biểu thị quãng đường đi được sau thời gian t giờ.
Lời giải: Quãng đường đi được là s = 40t (km). Vậy hàm số biểu thị quãng đường đi được sau thời gian t giờ là s = 40t.
Ngoài SGK Toán 9 tập 1, các em có thể tham khảo thêm các tài liệu sau để nắm vững kiến thức về hàm số bậc nhất:
Hy vọng với bài viết này, các em học sinh đã có thể giải thành công các bài tập trong mục 5 trang 62, 63, 64 SGK Toán 9 tập 1. Chúc các em học tập tốt!