Chào mừng các em học sinh đến với chuyên mục giải bài tập Toán 9 tại giaitoan.edu.vn. Trong bài viết này, chúng ta sẽ cùng nhau giải chi tiết các bài tập trong mục 3 trang 12, 13, 14 của sách giáo khoa Toán 9 tập 1.
Mục tiêu của chúng tôi là giúp các em hiểu rõ bản chất của bài toán, nắm vững phương pháp giải và tự tin làm bài tập.
Xét hệ phương trình: \(\left\{ \begin{array}{l}x - 2y = 1\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\left( 1 \right)\\ - 3x + 5y = - 4.\,\,\,\,\,\left( 2 \right)\end{array} \right.\) a) Từ phương trình (1) của hệ, biểu diễn \(x\) theo \(y\) rồi thế vào phương trình (2) để được một phương trình mới (chỉ còn một ẩn \(y\)). b) Giải phương trình chỉ còn một ẩn \(y\) ở câu a. c) Thay giá trị của \(y\) tìm được trong câu b vào phương trình biểu diễn \(x\) theo \(y\) trong câu a để tìm giá trị của \(x\). Kiểm
Trả lời câu hỏi Hoạt động 1 trang 12 SGK Toán 9 Cùng khám phá
Xét hệ phương trình:
\(\left\{ \begin{array}{l}x - 2y = 1\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\left( 1 \right)\\ - 3x + 5y = - 4.\,\,\,\,\,\left( 2 \right)\end{array} \right.\)
a) Từ phương trình (1) của hệ, biểu diễn \(x\) theo \(y\) rồi thế vào phương trình (2) để được một phương trình mới (chỉ còn một ẩn \(y\)).
b) Giải phương trình chỉ còn một ẩn \(y\) ở câu a.
c) Thay giá trị của \(y\) tìm được trong câu b vào phương trình biểu diễn \(x\) theo \(y\) trong câu a để tìm giá trị của \(x\). Kiểm tra xem cặp \(\left( {x;y} \right)\) vừa tìm được có phải là nghiệm của hệ phương trình đã cho không.
Phương pháp giải:
Thực hiện từng bước theo yêu cầu bài toán để giải hệ phương trình.
Lời giải chi tiết:
a) Từ phương trình thứ nhất, biểu diễn \(x\) theo \(y\) ta có \(x = 2y + 1\) (3).
Thế \(x = 2y + 1\) vào phương trình thứ hai ta được:
\( - 3\left( {2y + 1} \right) + 5y = - 4\).
b) Giải phương trình:
\(\begin{array}{l} - 3\left( {2y + 1} \right) + 5y = - 4\\ - 6y - 3 + 5y = - 4\\ - y = - 1\\y = 1.\end{array}\)
c) Thay giá trị \(y = 1\) vào (3) ta được:
\(x = 2.1 + 1 = 3.\)
Vì \(3 - 2.1 = 1\) nên cặp số \(\left( {3;1} \right)\) là nghiệm của phương trình \(x - 2y = 1\).
Vì \( - 3.3 + 5.1 = - 4\) nên cặp số \(\left( {3;1} \right)\) là nghiệm của phương trình \( - 3x + 5y = - 4\).
Vậy cặp \(\left( {x;y} \right) = \left( {3;1} \right)\) là nghiệm của hệ phương trình đã cho.
Trả lời câu hỏi Luyện tập 6 trang 14SGK Toán 9 Cùng khám phá
Giải các hệ phương trình sau:
a) \(\left\{ \begin{array}{l}2x - y = 3\\7x + 3y = 4;\end{array} \right.\)
b) \(\left\{ \begin{array}{l}4x + y = - 3\\12x + 3y = - 9;\end{array} \right.\)
c) \(\left\{ \begin{array}{l}x - 5y = - 4\\ - 4x + 20y = 15.\end{array} \right.\)
Phương pháp giải:
Thực hiện từng bước của giải hệ phương trình bằng phương pháp thế để giải hệ phương trình.
Lời giải chi tiết:
a) \(\left\{ \begin{array}{l}2x - y = 3\,\,\,\,\,\,\,\,\,\,\left( 1 \right)\\7x + 3y = 4\,\,\,\,\,\,\,\left( 2 \right)\end{array} \right.\)
Từ phương trình thứ nhất, biểu diễn \(y\) theo \(x\) ta có \(y = 2x - 3\). Thế \(y = 2x - 3\) vào phương trình thứ hai, ta được:
\(\begin{array}{l}7x + 3.\left( {2x - 3} \right) = 4\\7x + 6x - 9 = 4\\13x = 13\\x = 1.\end{array}\)
Thay \(x = 1\) vào phương trình \(y = 2x - 3\), ta tìm được \(y = - 1\).
Vậy hệ đã cho có nghiệm duy nhất là \(\left( {1; - 1} \right)\).
b) \(\left\{ \begin{array}{l}4x + y = - 3\,\,\,\,\,\,\,\,\,\,\,\,\left( 1 \right)\\12x + 3y = - 9\,\,\,\,\,\,\,\left( 2 \right)\end{array} \right.\).
Từ phương trình thứ nhất, biểu diễn \(y\) theo \(x\) ta có \(y = - 3 - 4x\). Thế \(y = - 3 - 4x\) vào phương trình thứ hai, ta được:
\(12x + 3.\left( { - 3 - 4x} \right) = - 9\) hay \(0x = 0\).
Mọi \(x \in \mathbb{R}\) đều là nghiệm của phương trình này. Vậy hệ đã cho có vô số nghiệm \(\left( {x;y} \right)\) với \(\left\{ \begin{array}{l}x \in \mathbb{R}\\y = - 3 - 4x\end{array} \right.\).
c) \(\left\{ \begin{array}{l}x - 5y = - 4\\ - 4x + 20y = 15\end{array} \right.\).
Từ phương trình thứ nhất, biểu diễn \(x\) theo \(y\) ta có \(x = 5y - 4\). Thế \(x = 5y - 4\) vào phương trình thứ hai, ta được:
\( - 4.\left( {5y - 4} \right) + 20y = 15\) hay \(0y = 21\).
Phương trình này không có nghiệm \(y\). Vậy hệ đã cho vô nghiệm.
Trả lời câu hỏi Hoạt động 1 trang 12 SGK Toán 9 Cùng khám phá
Xét hệ phương trình:
\(\left\{ \begin{array}{l}x - 2y = 1\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\left( 1 \right)\\ - 3x + 5y = - 4.\,\,\,\,\,\left( 2 \right)\end{array} \right.\)
a) Từ phương trình (1) của hệ, biểu diễn \(x\) theo \(y\) rồi thế vào phương trình (2) để được một phương trình mới (chỉ còn một ẩn \(y\)).
b) Giải phương trình chỉ còn một ẩn \(y\) ở câu a.
c) Thay giá trị của \(y\) tìm được trong câu b vào phương trình biểu diễn \(x\) theo \(y\) trong câu a để tìm giá trị của \(x\). Kiểm tra xem cặp \(\left( {x;y} \right)\) vừa tìm được có phải là nghiệm của hệ phương trình đã cho không.
Phương pháp giải:
Thực hiện từng bước theo yêu cầu bài toán để giải hệ phương trình.
Lời giải chi tiết:
a) Từ phương trình thứ nhất, biểu diễn \(x\) theo \(y\) ta có \(x = 2y + 1\) (3).
Thế \(x = 2y + 1\) vào phương trình thứ hai ta được:
\( - 3\left( {2y + 1} \right) + 5y = - 4\).
b) Giải phương trình:
\(\begin{array}{l} - 3\left( {2y + 1} \right) + 5y = - 4\\ - 6y - 3 + 5y = - 4\\ - y = - 1\\y = 1.\end{array}\)
c) Thay giá trị \(y = 1\) vào (3) ta được:
\(x = 2.1 + 1 = 3.\)
Vì \(3 - 2.1 = 1\) nên cặp số \(\left( {3;1} \right)\) là nghiệm của phương trình \(x - 2y = 1\).
Vì \( - 3.3 + 5.1 = - 4\) nên cặp số \(\left( {3;1} \right)\) là nghiệm của phương trình \( - 3x + 5y = - 4\).
Vậy cặp \(\left( {x;y} \right) = \left( {3;1} \right)\) là nghiệm của hệ phương trình đã cho.
Trả lời câu hỏi Luyện tập 6 trang 14SGK Toán 9 Cùng khám phá
Giải các hệ phương trình sau:
a) \(\left\{ \begin{array}{l}2x - y = 3\\7x + 3y = 4;\end{array} \right.\)
b) \(\left\{ \begin{array}{l}4x + y = - 3\\12x + 3y = - 9;\end{array} \right.\)
c) \(\left\{ \begin{array}{l}x - 5y = - 4\\ - 4x + 20y = 15.\end{array} \right.\)
Phương pháp giải:
Thực hiện từng bước của giải hệ phương trình bằng phương pháp thế để giải hệ phương trình.
Lời giải chi tiết:
a) \(\left\{ \begin{array}{l}2x - y = 3\,\,\,\,\,\,\,\,\,\,\left( 1 \right)\\7x + 3y = 4\,\,\,\,\,\,\,\left( 2 \right)\end{array} \right.\)
Từ phương trình thứ nhất, biểu diễn \(y\) theo \(x\) ta có \(y = 2x - 3\). Thế \(y = 2x - 3\) vào phương trình thứ hai, ta được:
\(\begin{array}{l}7x + 3.\left( {2x - 3} \right) = 4\\7x + 6x - 9 = 4\\13x = 13\\x = 1.\end{array}\)
Thay \(x = 1\) vào phương trình \(y = 2x - 3\), ta tìm được \(y = - 1\).
Vậy hệ đã cho có nghiệm duy nhất là \(\left( {1; - 1} \right)\).
b) \(\left\{ \begin{array}{l}4x + y = - 3\,\,\,\,\,\,\,\,\,\,\,\,\left( 1 \right)\\12x + 3y = - 9\,\,\,\,\,\,\,\left( 2 \right)\end{array} \right.\).
Từ phương trình thứ nhất, biểu diễn \(y\) theo \(x\) ta có \(y = - 3 - 4x\). Thế \(y = - 3 - 4x\) vào phương trình thứ hai, ta được:
\(12x + 3.\left( { - 3 - 4x} \right) = - 9\) hay \(0x = 0\).
Mọi \(x \in \mathbb{R}\) đều là nghiệm của phương trình này. Vậy hệ đã cho có vô số nghiệm \(\left( {x;y} \right)\) với \(\left\{ \begin{array}{l}x \in \mathbb{R}\\y = - 3 - 4x\end{array} \right.\).
c) \(\left\{ \begin{array}{l}x - 5y = - 4\\ - 4x + 20y = 15\end{array} \right.\).
Từ phương trình thứ nhất, biểu diễn \(x\) theo \(y\) ta có \(x = 5y - 4\). Thế \(x = 5y - 4\) vào phương trình thứ hai, ta được:
\( - 4.\left( {5y - 4} \right) + 20y = 15\) hay \(0y = 21\).
Phương trình này không có nghiệm \(y\). Vậy hệ đã cho vô nghiệm.
Mục 3 trong SGK Toán 9 tập 1 thường tập trung vào một chủ đề cụ thể, ví dụ như hàm số bậc nhất, hệ phương trình bậc nhất hai ẩn, hoặc các ứng dụng của phương trình bậc hai. Việc nắm vững kiến thức nền tảng và kỹ năng giải bài tập trong mục này là rất quan trọng để học tốt các kiến thức tiếp theo.
Bài tập này thường yêu cầu học sinh vận dụng kiến thức về định nghĩa hàm số bậc nhất để xác định hệ số a, b và vẽ đồ thị hàm số. Để giải bài tập này, các em cần:
Bài tập này có thể yêu cầu học sinh giải hệ phương trình bậc nhất hai ẩn bằng phương pháp thế hoặc phương pháp cộng đại số. Các bước giải bài tập này bao gồm:
Bài tập này có thể là một bài toán ứng dụng thực tế, yêu cầu học sinh sử dụng kiến thức về phương trình bậc hai để giải quyết. Ví dụ, bài toán có thể liên quan đến việc tính diện tích, chiều dài, hoặc vận tốc. Để giải bài toán này, các em cần:
Để giải bài tập Toán 9 một cách hiệu quả, các em cần:
Khi giải bài tập Toán 9, các em cần chú ý đến các đơn vị đo lường, các điều kiện của bài toán, và các trường hợp đặc biệt. Ngoài ra, các em cũng nên sử dụng máy tính bỏ túi để tính toán nhanh chóng và chính xác.
Hy vọng rằng với hướng dẫn chi tiết này, các em sẽ tự tin giải các bài tập trong mục 3 trang 12, 13, 14 SGK Toán 9 tập 1. Chúc các em học tốt và đạt kết quả cao trong môn Toán!
Bài tập | Chủ đề | Phương pháp giải |
---|---|---|
Bài 1 | Hàm số bậc nhất | Xác định hệ số, vẽ đồ thị |
Bài 2 | Hệ phương trình bậc nhất hai ẩn | Phương pháp thế, cộng đại số |
Bài 3 | Ứng dụng phương trình bậc hai | Lập phương trình, giải phương trình |