Logo Header
  1. Môn Toán
  2. Giải bài tập 5.9 trang 106 SGK Toán 9 tập 1 - Cùng khám phá

Giải bài tập 5.9 trang 106 SGK Toán 9 tập 1 - Cùng khám phá

Giải bài tập 5.9 trang 106 SGK Toán 9 tập 1

Chào mừng các em học sinh đến với bài giải bài tập 5.9 trang 106 SGK Toán 9 tập 1 tại giaitoan.edu.vn. Bài tập này thuộc chương Hàm số bậc nhất và là một phần quan trọng trong việc củng cố kiến thức về hàm số.

Chúng tôi cung cấp lời giải chi tiết, dễ hiểu, giúp các em nắm vững phương pháp giải và áp dụng vào các bài tập tương tự.

Trong Hình 5.22, hai bể xử lí nước có dạng hình tròn có tâm ở hai điểm A, B và bán kính bằng nhau. Chiều dài của chiếc cầu nối hai tâm của bể nước là \(AB = 20,7m\). Gọi C và D lần lượt là giao điểm của đoạn thẳng AB với hai đường tròn. Biết \(CD = 0,7m\), tính bán kính mỗi bể nước.

Đề bài

Trong Hình 5.22, hai bể xử lí nước có dạng hình tròn có tâm ở hai điểm A, B và bán kính bằng nhau. Chiều dài của chiếc cầu nối hai tâm của bể nước là \(AB = 20,7m\). Gọi C và D lần lượt là giao điểm của đoạn thẳng AB với hai đường tròn. Biết \(CD = 0,7m\), tính bán kính mỗi bể nước.

Giải bài tập 5.9 trang 106 SGK Toán 9 tập 1 - Cùng khám phá 1

Phương pháp giải - Xem chi tiếtGiải bài tập 5.9 trang 106 SGK Toán 9 tập 1 - Cùng khám phá 2

+ Chỉ ra AC là bán kính bể nước tâm A, BD là bán kính đường tròn tâm B và \(AC = BD\).

+ Từ hệ thức \(AB = AC + CD + DB\) và \(AB = 20,7m\), \(CD = 0,7m\), ta tìm được AC.

Lời giải chi tiết

Ta có: AC là bán kính bể nước tâm A, BD là bán kính đường tròn tâm B và \(AC = BD\).

Lại có: \(AB = AC + CD + DB\)

\(2AC + 0,7 = 20,7\)

\(AC = 10m\)

Vậy bán kính mỗi bể nước bằng 10m.

Làm chủ Toán 9, tự tin vào phòng thi! Đừng bỏ lỡ Giải bài tập 5.9 trang 106 SGK Toán 9 tập 1 - Cùng khám phá đặc sắc thuộc chuyên mục giải sgk toán 9 trên nền tảng toán math. Với bộ bài tập toán trung học cơ sở được biên soạn chuyên sâu, bám sát cấu trúc đề thi và chương trình sách giáo khoa mới nhất, đây chính là công cụ đắc lực giúp các em tối ưu hóa ôn luyện, củng cố kiến thức vững chắc và thuần thục mọi dạng bài thi khó nhằn. Phương pháp học trực quan, khoa học sẽ mang lại hiệu quả vượt trội, giúp con bạn chinh phục mọi thử thách một cách dễ dàng.

Giải bài tập 5.9 trang 106 SGK Toán 9 tập 1: Phương pháp tiếp cận và lời giải chi tiết

Bài tập 5.9 trang 106 SGK Toán 9 tập 1 yêu cầu chúng ta xét hàm số y = (m-2)x + 3. Để hàm số này là hàm số bậc nhất, điều kiện cần và đủ là hệ số của x khác 0, tức là m-2 ≠ 0. Bài viết này sẽ đi sâu vào phân tích điều kiện này và cách xác định giá trị của m để đảm bảo hàm số thỏa mãn yêu cầu.

1. Điều kiện để hàm số là hàm số bậc nhất

Hàm số y = ax + b được gọi là hàm số bậc nhất khi và chỉ khi a ≠ 0. Trong trường hợp bài tập 5.9, a = m-2. Do đó, để y = (m-2)x + 3 là hàm số bậc nhất, chúng ta cần có:

m - 2 ≠ 0

Giải phương trình này, ta được:

m ≠ 2

Vậy, với mọi giá trị của m khác 2, hàm số y = (m-2)x + 3 là hàm số bậc nhất.

2. Phân tích các trường hợp đặc biệt

Khi m = 2, hàm số trở thành y = (2-2)x + 3 = 0x + 3 = 3. Đây là một hàm số hằng, không phải là hàm số bậc nhất. Do đó, việc xác định giá trị m ≠ 2 là rất quan trọng.

3. Ví dụ minh họa

Xét m = 3. Khi đó, hàm số trở thành y = (3-2)x + 3 = x + 3. Đây là hàm số bậc nhất với hệ số góc là 1 và tung độ gốc là 3.

Xét m = 0. Khi đó, hàm số trở thành y = (0-2)x + 3 = -2x + 3. Đây là hàm số bậc nhất với hệ số góc là -2 và tung độ gốc là 3.

4. Mở rộng kiến thức: Ứng dụng của hàm số bậc nhất

Hàm số bậc nhất có rất nhiều ứng dụng trong thực tế, ví dụ như:

  • Tính toán chi phí: Chi phí sản xuất một sản phẩm có thể được biểu diễn bằng một hàm số bậc nhất, trong đó x là số lượng sản phẩm và y là chi phí.
  • Dự báo doanh thu: Doanh thu bán hàng có thể được biểu diễn bằng một hàm số bậc nhất, trong đó x là số lượng sản phẩm bán ra và y là doanh thu.
  • Mô tả chuyển động: Vận tốc của một vật thể chuyển động đều có thể được biểu diễn bằng một hàm số bậc nhất, trong đó x là thời gian và y là quãng đường đi được.

5. Bài tập tương tự

Để củng cố kiến thức về hàm số bậc nhất, các em có thể làm thêm các bài tập sau:

  1. Xác định giá trị của m để hàm số y = (m+1)x - 2 là hàm số bậc nhất.
  2. Tìm giá trị của m để hàm số y = (1-m)x + 5 là hàm số bậc nhất.
  3. Cho hàm số y = 2x + m. Tìm giá trị của m để đồ thị hàm số đi qua điểm A(1; 3).

6. Lời khuyên khi giải bài tập về hàm số bậc nhất

Khi giải các bài tập về hàm số bậc nhất, các em cần lưu ý những điều sau:

  • Nắm vững định nghĩa và điều kiện của hàm số bậc nhất.
  • Biết cách xác định hệ số góc và tung độ gốc của hàm số.
  • Luyện tập giải nhiều bài tập khác nhau để làm quen với các dạng bài và phương pháp giải.
  • Sử dụng các công cụ hỗ trợ như máy tính bỏ túi hoặc phần mềm vẽ đồ thị để kiểm tra kết quả.

7. Kết luận

Bài tập 5.9 trang 106 SGK Toán 9 tập 1 là một bài tập cơ bản nhưng quan trọng trong việc hiểu về hàm số bậc nhất. Hy vọng rằng với lời giải chi tiết và các ví dụ minh họa trong bài viết này, các em sẽ nắm vững kiến thức và tự tin giải các bài tập tương tự.

Chúc các em học tập tốt!

Tài liệu, đề thi và đáp án Toán 9