Chào mừng các em học sinh đến với chuyên mục giải bài tập Toán 9 tập 1 tại giaitoan.edu.vn. Ở đây, chúng tôi cung cấp lời giải chi tiết và dễ hiểu cho tất cả các bài tập trong sách giáo khoa, giúp các em nắm vững kiến thức và tự tin hơn trong học tập.
Mục 2 của chương trình Toán 9 tập 1 thường xoay quanh các chủ đề quan trọng như phương trình bậc nhất một ẩn, hệ phương trình bậc nhất hai ẩn và ứng dụng của chúng. Việc hiểu rõ và làm thành thạo các bài tập trong mục này là nền tảng vững chắc cho các kiến thức nâng cao hơn.
Trong phần Khởi động, gọi \(x\) (phút) và \(y\) (phút) lần lượt là thời gian cô Dung thực hiện bài thể dục nhịp điệu và bài tập thể dục giãn cơ để đạt được mục tiêu. Lập hai phương trình biểu diễn sự liên hệ giữa \(x\) và \(y\).
Trả lời câu hỏi Hoạt động 3 trang 10 SGK Toán 9 Cùng khám phá
Trong phần Khởi động, gọi \(x\) (phút) và \(y\) (phút) lần lượt là thời gian cô Dung thực hiện bài thể dục nhịp điệu và bài tập thể dục giãn cơ để đạt được mục tiêu. Lập hai phương trình biểu diễn sự liên hệ giữa \(x\) và \(y\).
Phương pháp giải:
Dựa vào các mối liên hệ giữa \(x\) và \(y\) để lập các phương trình.
Lời giải chi tiết:
+ Do cô Dung tập thể dục mỗi buổi sáng trong 45 phút nên ta có phương trình: \(x + y = 45\).
+ Do mục tiêu của cô ấy là đốt cháy hết 420 calo sau mỗi buổi tập thể dục nên ta có phương trình: \(12x + 4y = 420\).
Trả lời câu hỏi Luyện tập 5 trang 12SGK Toán 9 Cùng khám phá
Giải thích vì sao hệ phương trình \(\left\{ \begin{array}{l}x - y = 1\\2x - 2y = 3\end{array} \right.\) vô nghiệm.
Phương pháp giải:
Giả sử nghiệm của phương trình để chứng minh.
Lời giải chi tiết:
Giả sử hệ phương trình đã cho có nghiệm, tức là có một cặp số \(\left( {x_0^{};y_0^{}} \right)\) sao cho \(x_0^{} - y_0^{} = 1\) và \(2x_0^{} - 2y_0^{} = 3\).
Do đó \(x_0^{} - y_0^{} = 1\) và \(x_0^{} - y_0^{} = \frac{3}{2}\).
Suy ra \(1 = \frac{3}{2}\) (vô lí).
Vậy hệ phương trình đã cho vô nghiệm.
Trả lời câu hỏi Hoạt động 4 trang 11 SGK Toán 9 Cùng khám phá
Xét hệ hai phương trình bậc nhất hai ẩn
\(\left\{ \begin{array}{l}x + y = 45\\3x + y = 105.\end{array} \right.\)
Trong hai cặp số \(\left( {25;20} \right)\) và \(\left( {30;15} \right)\), cặp số nào là một nghiệm của phương trình \(x + y = 45\), đồng thời là một nghiệm của phương trình \(3x + y = 105\)?
Phương pháp giải:
Thay các cặp số vào hai phương trình để kiểm tra nghiệm.
Lời giải chi tiết:
Vì \(25 + 20 = 45\) nên cặp số \(\left( {25;20} \right)\) là một nghiệm của phương trình \(x + y = 45\).
Vì \(3.25 + 20 \ne 105\) nên cặp số \(\left( {25;20} \right)\) không là một nghiệm của phương trình \(3x + y = 105\).
Vậy cặp số \(\left( {25;20} \right)\) là nghiệm của phương trình \(x + y = 45\) nhưng không là nghiệm của phương trình \(3x + y = 105\).
Vì \(30 + 15 = 45\) nên cặp số \(\left( {30;15} \right)\) là một nghiệm của phương trình \(30 + 15 = 45\).
Vì \(3.30 + 15 = 105\) nên cặp số \(\left( {30;15} \right)\) là một nghiệm của phương trình \(3x + y = 105\).
Vậy cặp số \(\left( {30;15} \right)\) là nghiệm của phương trình \(x + y = 45\) đồng thời là nghiệm của phương trình \(3x + y = 105\).
Trả lời câu hỏi Hoạt động 3 trang 10 SGK Toán 9 Cùng khám phá
Trong phần Khởi động, gọi \(x\) (phút) và \(y\) (phút) lần lượt là thời gian cô Dung thực hiện bài thể dục nhịp điệu và bài tập thể dục giãn cơ để đạt được mục tiêu. Lập hai phương trình biểu diễn sự liên hệ giữa \(x\) và \(y\).
Phương pháp giải:
Dựa vào các mối liên hệ giữa \(x\) và \(y\) để lập các phương trình.
Lời giải chi tiết:
+ Do cô Dung tập thể dục mỗi buổi sáng trong 45 phút nên ta có phương trình: \(x + y = 45\).
+ Do mục tiêu của cô ấy là đốt cháy hết 420 calo sau mỗi buổi tập thể dục nên ta có phương trình: \(12x + 4y = 420\).
Trả lời câu hỏi Luyện tập 4 trang 11SGK Toán 9 Cùng khám phá
Có bao nhiêu hệ hai phương trình bậc nhất hai ẩn trong các hệ phương trình sau?
\(\begin{array}{l}\left\{ \begin{array}{l}y = 0\\x - 3y = 6;\end{array} \right.\\\left\{ \begin{array}{l}{x^2} - {y^2} = 1\\x + y = 2;\end{array} \right.\\\left\{ \begin{array}{l}\frac{1}{y} - 7x = 8\\x = - 1;\end{array} \right.\\\left\{ \begin{array}{l}x + y - 9 = 0\\x - 4 = 0;\end{array} \right.\\\left\{ \begin{array}{l}y - x = 5\\2x - 2y = - 10.\end{array} \right.\end{array}\)
Phương pháp giải:
Dựa vào dạng của hệ hai phương trình bậc nhất hai ẩn để xác định.
Lời giải chi tiết:
Có 3 hệ hai phương trình bậc nhất hai ẩn, đó là: \(\left\{ \begin{array}{l}y = 0\\x - 3y = 6\end{array} \right.;\left\{ \begin{array}{l}x + y - 9 = 0\\x - 4 = 0\end{array} \right.;\left\{ \begin{array}{l}y - x = 5\\2x - 2y = - 10\end{array} \right..\)
Trả lời câu hỏi Hoạt động 4 trang 11 SGK Toán 9 Cùng khám phá
Xét hệ hai phương trình bậc nhất hai ẩn
\(\left\{ \begin{array}{l}x + y = 45\\3x + y = 105.\end{array} \right.\)
Trong hai cặp số \(\left( {25;20} \right)\) và \(\left( {30;15} \right)\), cặp số nào là một nghiệm của phương trình \(x + y = 45\), đồng thời là một nghiệm của phương trình \(3x + y = 105\)?
Phương pháp giải:
Thay các cặp số vào hai phương trình để kiểm tra nghiệm.
Lời giải chi tiết:
Vì \(25 + 20 = 45\) nên cặp số \(\left( {25;20} \right)\) là một nghiệm của phương trình \(x + y = 45\).
Vì \(3.25 + 20 \ne 105\) nên cặp số \(\left( {25;20} \right)\) không là một nghiệm của phương trình \(3x + y = 105\).
Vậy cặp số \(\left( {25;20} \right)\) là nghiệm của phương trình \(x + y = 45\) nhưng không là nghiệm của phương trình \(3x + y = 105\).
Vì \(30 + 15 = 45\) nên cặp số \(\left( {30;15} \right)\) là một nghiệm của phương trình \(30 + 15 = 45\).
Vì \(3.30 + 15 = 105\) nên cặp số \(\left( {30;15} \right)\) là một nghiệm của phương trình \(3x + y = 105\).
Vậy cặp số \(\left( {30;15} \right)\) là nghiệm của phương trình \(x + y = 45\) đồng thời là nghiệm của phương trình \(3x + y = 105\).
Trả lời câu hỏi Luyện tập 5 trang 12SGK Toán 9 Cùng khám phá
Giải thích vì sao hệ phương trình \(\left\{ \begin{array}{l}x - y = 1\\2x - 2y = 3\end{array} \right.\) vô nghiệm.
Phương pháp giải:
Giả sử nghiệm của phương trình để chứng minh.
Lời giải chi tiết:
Giả sử hệ phương trình đã cho có nghiệm, tức là có một cặp số \(\left( {x_0^{};y_0^{}} \right)\) sao cho \(x_0^{} - y_0^{} = 1\) và \(2x_0^{} - 2y_0^{} = 3\).
Do đó \(x_0^{} - y_0^{} = 1\) và \(x_0^{} - y_0^{} = \frac{3}{2}\).
Suy ra \(1 = \frac{3}{2}\) (vô lí).
Vậy hệ phương trình đã cho vô nghiệm.
Trả lời câu hỏi Luyện tập 4 trang 11SGK Toán 9 Cùng khám phá
Có bao nhiêu hệ hai phương trình bậc nhất hai ẩn trong các hệ phương trình sau?
\(\begin{array}{l}\left\{ \begin{array}{l}y = 0\\x - 3y = 6;\end{array} \right.\\\left\{ \begin{array}{l}{x^2} - {y^2} = 1\\x + y = 2;\end{array} \right.\\\left\{ \begin{array}{l}\frac{1}{y} - 7x = 8\\x = - 1;\end{array} \right.\\\left\{ \begin{array}{l}x + y - 9 = 0\\x - 4 = 0;\end{array} \right.\\\left\{ \begin{array}{l}y - x = 5\\2x - 2y = - 10.\end{array} \right.\end{array}\)
Phương pháp giải:
Dựa vào dạng của hệ hai phương trình bậc nhất hai ẩn để xác định.
Lời giải chi tiết:
Có 3 hệ hai phương trình bậc nhất hai ẩn, đó là: \(\left\{ \begin{array}{l}y = 0\\x - 3y = 6\end{array} \right.;\left\{ \begin{array}{l}x + y - 9 = 0\\x - 4 = 0\end{array} \right.;\left\{ \begin{array}{l}y - x = 5\\2x - 2y = - 10\end{array} \right..\)
Mục 2 trong SGK Toán 9 tập 1 tập trung vào việc củng cố và mở rộng kiến thức về phương trình bậc nhất một ẩn và hệ phương trình bậc nhất hai ẩn. Đây là một trong những phần quan trọng nhất của chương trình, đòi hỏi học sinh phải nắm vững các khái niệm cơ bản và kỹ năng giải bài tập một cách linh hoạt.
Dưới đây là lời giải chi tiết cho các bài tập trong Mục 2, trang 10, 11 và 12 của SGK Toán 9 tập 1:
a) 2x + 3 = 7
Lời giải: 2x = 7 - 3 => 2x = 4 => x = 2
b) 5x - 10 = 0
Lời giải: 5x = 10 => x = 2
a) x + y = 5x - y = 1
Lời giải: Cộng hai phương trình, ta được 2x = 6 => x = 3. Thay x = 3 vào phương trình x + y = 5, ta được 3 + y = 5 => y = 2. Vậy nghiệm của hệ phương trình là (x; y) = (3; 2).
b) 2x + y = 7x - y = 2
Lời giải: Cộng hai phương trình, ta được 3x = 9 => x = 3. Thay x = 3 vào phương trình x - y = 2, ta được 3 - y = 2 => y = 1. Vậy nghiệm của hệ phương trình là (x; y) = (3; 1).
Một người đi xe máy từ A đến B với vận tốc 40km/h. Sau khi đi được 1 giờ, người đó tăng vận tốc lên 50km/h và đến B muộn hơn 30 phút so với dự kiến. Tính quãng đường AB.
Lời giải: Gọi quãng đường AB là x (km). Thời gian dự kiến đi từ A đến B là x/40 (giờ). Thời gian thực tế đi từ A đến B là 1 + (x-40)/50 (giờ). Theo đề bài, ta có phương trình: x/40 - (1 + (x-40)/50) = 1/2. Giải phương trình này, ta được x = 200. Vậy quãng đường AB là 200km.
Ngoài SGK Toán 9 tập 1, các em có thể tham khảo thêm các tài liệu sau:
Hy vọng với những hướng dẫn chi tiết này, các em sẽ tự tin hơn trong việc giải các bài tập Mục 2 trang 10, 11, 12 SGK Toán 9 tập 1. Chúc các em học tập tốt!