Chào mừng các em học sinh đến với bài giải chi tiết mục 1 trang 59 SGK Toán 9 tập 1 trên giaitoan.edu.vn. Bài viết này sẽ cung cấp cho các em lời giải đầy đủ, dễ hiểu, giúp các em hiểu rõ hơn về kiến thức và phương pháp giải bài tập.
Chúng tôi luôn cố gắng mang đến những tài liệu học tập chất lượng cao, hỗ trợ các em học tập tốt hơn.
Một tấm thảm hình chữ nhật có đường chéo là 5dm và chiều rộng là x(dm). Giải thích vì sao chiều dài của thảm là \(\sqrt {25 - {x^2}} \left( {dm} \right)\).
Trả lời câu hỏi Hoạt động 1 trang 59 SGK Toán 9 Cùng khám phá
Một tấm thảm hình chữ nhật có đường chéo là 5dm và chiều rộng là x(dm). Giải thích vì sao chiều dài của thảm là \(\sqrt {25 - {x^2}} \left( {dm} \right)\).
Phương pháp giải:
+ Xét hình chữ nhật ABCD có độ dài đường chéo \(AC = 5dm\), chiều rộng \(BC = x\left( {dm} \right)\).
+ Áp dụng định lí Pythagore vào tam giác ABC vuông tại B để tính chiều dài AB.
Lời giải chi tiết:
Xét hình chữ nhật ABCD có \(AC = 5dm,BC = x\left( {dm} \right)\).
Áp dụng định lí Pythagore vào tam giác ABC vuông tại B ta có: \(A{B^2} + B{C^2} = A{C^2}\)
\(A{B^2} = A{C^2} - B{C^2} = {5^2} - {x^2} = 25 - {x^2}\) nên \(AB = \sqrt {25 - {x^2}} \left( {dm} \right)\).
Trả lời câu hỏi Luyện tập 1 trang 59SGK Toán 9 Cùng khám phá
Chỉ ra các căn thức bậc hai trong các biểu thức sau và tìm điều kiện để chúng xác định:
\({x^2} + y - 1\); \(\sqrt {{x^2} + 5} \); \(\frac{{xy + 2z}}{{{y^2} + z}}\); \({a^2} - 3a + 4\); \(\sqrt {3u - 6} \).
Phương pháp giải:
+ Với A là một biểu thức đại số, người ta gọi \(\sqrt A \) là căn bậc hai của A.
+ \(\sqrt A \) xác định (hay có nghĩa) khi A lấy giá trị không âm.
Lời giải chi tiết:
Các biểu thức là căn thức bậc hai là: \(\sqrt {{x^2} + 5} \); \(\sqrt {3u - 6} \).
Ta thấy: \({x^2} \ge 0\) với mọi số thực x nên \({x^2} + 5 > 0\) với mọi số thực x. Do đó, \(\sqrt {{x^2} + 5} \) xác định với mọi số thực x.
\(\sqrt {3u - 6} \) xác định khi \(3u - 6 \ge 0\), tức là \(u \ge 2\).
Trả lời câu hỏi Hoạt động 1 trang 59 SGK Toán 9 Cùng khám phá
Một tấm thảm hình chữ nhật có đường chéo là 5dm và chiều rộng là x(dm). Giải thích vì sao chiều dài của thảm là \(\sqrt {25 - {x^2}} \left( {dm} \right)\).
Phương pháp giải:
+ Xét hình chữ nhật ABCD có độ dài đường chéo \(AC = 5dm\), chiều rộng \(BC = x\left( {dm} \right)\).
+ Áp dụng định lí Pythagore vào tam giác ABC vuông tại B để tính chiều dài AB.
Lời giải chi tiết:
Xét hình chữ nhật ABCD có \(AC = 5dm,BC = x\left( {dm} \right)\).
Áp dụng định lí Pythagore vào tam giác ABC vuông tại B ta có: \(A{B^2} + B{C^2} = A{C^2}\)
\(A{B^2} = A{C^2} - B{C^2} = {5^2} - {x^2} = 25 - {x^2}\) nên \(AB = \sqrt {25 - {x^2}} \left( {dm} \right)\).
Trả lời câu hỏi Luyện tập 1 trang 59SGK Toán 9 Cùng khám phá
Chỉ ra các căn thức bậc hai trong các biểu thức sau và tìm điều kiện để chúng xác định:
\({x^2} + y - 1\); \(\sqrt {{x^2} + 5} \); \(\frac{{xy + 2z}}{{{y^2} + z}}\); \({a^2} - 3a + 4\); \(\sqrt {3u - 6} \).
Phương pháp giải:
+ Với A là một biểu thức đại số, người ta gọi \(\sqrt A \) là căn bậc hai của A.
+ \(\sqrt A \) xác định (hay có nghĩa) khi A lấy giá trị không âm.
Lời giải chi tiết:
Các biểu thức là căn thức bậc hai là: \(\sqrt {{x^2} + 5} \); \(\sqrt {3u - 6} \).
Ta thấy: \({x^2} \ge 0\) với mọi số thực x nên \({x^2} + 5 > 0\) với mọi số thực x. Do đó, \(\sqrt {{x^2} + 5} \) xác định với mọi số thực x.
\(\sqrt {3u - 6} \) xác định khi \(3u - 6 \ge 0\), tức là \(u \ge 2\).
Mục 1 trang 59 SGK Toán 9 tập 1 thường xoay quanh các bài toán liên quan đến hàm số bậc nhất, bao gồm việc xác định hệ số góc, phương trình đường thẳng, và ứng dụng của hàm số trong việc giải quyết các bài toán thực tế. Việc nắm vững kiến thức về hàm số bậc nhất là nền tảng quan trọng cho các chương trình học toán ở các lớp trên.
Trước khi đi vào giải bài tập, chúng ta cần ôn lại một số lý thuyết cơ bản:
Mục 1 trang 59 SGK Toán 9 tập 1 thường xuất hiện các dạng bài tập sau:
Bài tập: Tìm phương trình đường thẳng đi qua điểm A(1; 2) và có hệ số góc m = -3.
Giải:
Phương trình đường thẳng có dạng y = mx + b. Thay điểm A(1; 2) và m = -3 vào phương trình, ta có:
2 = -3 * 1 + b
=> b = 5
Vậy phương trình đường thẳng cần tìm là y = -3x + 5.
Để giải nhanh các bài tập về hàm số bậc nhất, các em có thể áp dụng một số mẹo sau:
Để củng cố kiến thức và kỹ năng giải bài tập, các em nên luyện tập thêm với các bài tập tương tự trong SGK và các tài liệu tham khảo khác. Việc luyện tập thường xuyên sẽ giúp các em nắm vững kiến thức và tự tin hơn khi làm bài kiểm tra.
Hy vọng bài giải chi tiết mục 1 trang 59 SGK Toán 9 tập 1 trên giaitoan.edu.vn sẽ giúp các em hiểu rõ hơn về kiến thức và phương pháp giải bài tập. Chúc các em học tập tốt!
Công thức | Mô tả |
---|---|
y = ax + b | Phương trình đường thẳng |
a | Hệ số góc |
a1 * a2 = -1 | Điều kiện hai đường thẳng vuông góc |