Chào mừng các em học sinh đến với bài giải bài tập 3.27 trang 70 SGK Toán 9 tập 1 trên giaitoan.edu.vn. Bài tập này thuộc chương Hàm số bậc nhất và ứng dụng. Chúng tôi sẽ cung cấp lời giải chi tiết, dễ hiểu, giúp các em nắm vững kiến thức và kỹ năng giải toán.
Giaitoan.edu.vn là nền tảng học toán online uy tín, cung cấp đầy đủ các bài giải SGK Toán 9, bài tập trắc nghiệm, và các tài liệu học tập hữu ích khác.
Khoảng cách trung bình d(m) giữa một hành tinh và Mặt Trời liên hệ với chu kì quỹ đạo T(s) của hành tinh (thời gian hành tinh quay một vòng quanh Mặt Trời) theo công thức \({d^3} = \frac{{{{10}^{19}}}}{{2,97}}{T^2}\) (nguồn: https://www.physicsclassroom.com/class/circles/Lesson-4/Kepler-s-Three-Laws). a) Viết biểu thức tính d theo T. b) Tính khoảng cách trung bình giữa Sao Hỏa và Mặt Trời theo kilômét, biết rằng chu kì quỹ đạo của Sao Hỏa là \(5,{93.10^7}\) giây (làm tròn kết quả đến hàng tră
Đề bài
Khoảng cách trung bình d(m) giữa một hành tinh và Mặt Trời liên hệ với chu kì quỹ đạo T(s) của hành tinh (thời gian hành tinh quay một vòng quanh Mặt Trời) theo công thức \({d^3} = \frac{{{{10}^{19}}}}{{2,97}}{T^2}\) (nguồn: https://www.physicsclassroom.com/class/circles/Lesson-4/Kepler-s-Three-Laws).
a) Viết biểu thức tính d theo T.
b) Tính khoảng cách trung bình giữa Sao Hỏa và Mặt Trời theo kilômét, biết rằng chu kì quỹ đạo của Sao Hỏa là \(5,{93.10^7}\) giây (làm tròn kết quả đến hàng trăm nghìn).
Phương pháp giải - Xem chi tiết
a) Căn bậc ba của một số thực a là số x sao cho \({x^3} = a\)
b) Thay \(T = 5,{93.10^7}\) vào biểu thức tính d theo T tìm được ở phần a, ta tính được kết quả
Lời giải chi tiết
a) Vì \({d^3} = \frac{{{{10}^{19}}}}{{2,97}}{T^2}\) nên \(d = \sqrt[3]{{\frac{{{{10}^{19}}}}{{2,97}}{T^2}}}\).
b) Với \(T = 5,{93.10^7}\) thay vào \(d = \sqrt[3]{{\frac{{{{10}^{19}}}}{{2,97}}{T^2}}}\) ta có:
\(d = \sqrt[3]{{\frac{{{{10}^{19}}}}{{2,97}}.{{\left( {5,{{93.10}^7}} \right)}^2}}} \approx 227\;921\;000\;000\left( {km} \right)\)
Vậy khoảng cách trung bình giữa Sao Hỏa và Mặt Trời khoảng \(227\;921\;000\;000km\).
Bài tập 3.27 trang 70 SGK Toán 9 tập 1 yêu cầu chúng ta giải một bài toán liên quan đến hàm số bậc nhất. Để giải bài tập này một cách hiệu quả, chúng ta cần nắm vững các kiến thức cơ bản về hàm số bậc nhất, bao gồm định nghĩa, dạng tổng quát, và các tính chất của hàm số.
Hàm số bậc nhất có dạng y = ax + b (với a ≠ 0). Trong đó:
Để xác định một hàm số bậc nhất, chúng ta cần biết hai điểm thuộc đồ thị hàm số hoặc biết hệ số góc và một điểm thuộc đồ thị hàm số.
Trước khi đi vào giải bài tập cụ thể, chúng ta cần đọc kỹ đề bài và xác định rõ yêu cầu của bài toán. Bài toán thường yêu cầu chúng ta:
(Ở đây sẽ là lời giải chi tiết của bài tập 3.27, bao gồm các bước giải, giải thích rõ ràng, và kết luận. Ví dụ:)
Giả sử bài toán yêu cầu tìm hàm số bậc nhất y = ax + b đi qua hai điểm A(1; 2) và B(-1; 0).
Ngoài bài tập 3.27, còn rất nhiều bài tập tương tự liên quan đến hàm số bậc nhất. Để giải các bài tập này, chúng ta có thể áp dụng các phương pháp sau:
Để củng cố kiến thức và kỹ năng giải toán, các em nên luyện tập thêm với các bài tập khác trong SGK Toán 9 tập 1 và các tài liệu tham khảo khác. Giaitoan.edu.vn cung cấp đầy đủ các bài giải và bài tập luyện tập để giúp các em học toán hiệu quả hơn.
Hàm số bậc nhất có rất nhiều ứng dụng trong thực tế, ví dụ như:
Việc nắm vững kiến thức về hàm số bậc nhất sẽ giúp các em giải quyết các bài toán thực tế một cách dễ dàng và hiệu quả hơn.
Bài tập 3.27 trang 70 SGK Toán 9 tập 1 là một bài tập quan trọng giúp các em hiểu rõ hơn về hàm số bậc nhất và ứng dụng của nó. Hy vọng với lời giải chi tiết và các phương pháp giải đã trình bày, các em sẽ tự tin hơn khi giải các bài tập tương tự.