Chào mừng các em học sinh đến với bài giải bài tập 1.20 trang 24 SGK Toán 9 tập 1 trên giaitoan.edu.vn. Bài tập này thuộc chương Hàm số bậc nhất, một trong những kiến thức quan trọng của chương trình Toán 9.
Chúng tôi cung cấp lời giải chi tiết, dễ hiểu, giúp các em nắm vững kiến thức và rèn luyện kỹ năng giải toán.
Giải các phương trình sau bằng cách đưa về dạng tích: a) \(x\left( {2x - 10} \right) = 4x\left( {x - 6} \right)\). b) \(4x + 12 = \left( {x + 3} \right)\left( {7 - 5x} \right)\). c) \(\left( {{x^2} + 4x + 4} \right) - 25 = 0\). d) \(9{x^2} - 6x + 1 = {x^2}\).
Đề bài
Giải các phương trình sau bằng cách đưa về dạng tích:
a) \(x\left( {2x - 10} \right) = 4x\left( {x - 6} \right)\).
b) \(4x + 12 = \left( {x + 3} \right)\left( {7 - 5x} \right)\).
c) \(\left( {{x^2} + 4x + 4} \right) - 25 = 0\).
d) \(9{x^2} - 6x + 1 = {x^2}\).
Phương pháp giải - Xem chi tiết
+ Chuyển về phương trình tích;
+ Giải phương trình theo phương pháp giải phương trình tích;
+ Kết luận nghiệm.
Lời giải chi tiết
a) \(x\left( {2x - 10} \right) = 4x\left( {x - 6} \right)\)
\(\begin{array}{l}x\left( {2x - 10} \right) - 4x\left( {x - 6} \right) = 0\\x\left[ {2x - 10 - 4\left( {x - 6} \right)} \right] = 0\\x\left( {2x - 10 - 4x + 24} \right) = 0\\x\left( { - 2x + 14} \right) = 0.\end{array}\)
Phương trình \(x = 0\) có nghiệm duy nhất \(x = 0\).
Phương trình \( - 2x + 14 = 0\) có nghiệm duy nhất \(x = 7\).
Vậy phương trình \(x\left( {2x - 10} \right) = 4x\left( {x - 6} \right)\) có hai nghiệm \(x = 0\) và \(x = 7\).
b) \(4x + 12 = \left( {x + 3} \right)\left( {7 - 5x} \right)\)
\(\begin{array}{l}4\left( {x + 3} \right) - \left( {x + 3} \right)\left( {7 - 5x} \right) = 0\\\left( {x + 3} \right)\left[ {4 - \left( {7 - 5x} \right)} \right] = 0\\\left( {x + 3} \right)\left( {4 - 7 + 5x} \right) = 0\\\left( {x + 3} \right)\left( {5x - 3} \right) = 0.\end{array}\)
Phương trình \(x + 3 = 0\) có nghiệm duy nhất \(x = - 3\).
Phương trình \(5x - 3 = 0\) có nghiệm duy nhất \(x = \frac{3}{5}\).
Vậy phương trình \(4x + 12 = \left( {x + 3} \right)\left( {7 - 5x} \right)\) có hai nghiệm \(x = - 3\) và \(x = \frac{3}{5}\).
c) \(\left( {{x^2} + 4x + 4} \right) - 25 = 0\)
\(\begin{array}{l}{\left( {x + 2} \right)^2} - {5^2} = 0\\\left( {x + 2 - 5} \right)\left( {x + 2 + 5} \right) = 0\\\left( {x - 3} \right)\left( {x + 7} \right) = 0.\end{array}\)
Phương trình \(x - 3 = 0\) có nghiệm duy nhất \(x = 3\).
Phương trình \(x + 7 = 0\) có nghiệm duy nhất \(x = - 7\).
Vậy phương trình \(\left( {{x^2} + 4x + 4} \right) - 25 = 0\) có hai nghiệm \(x = 3\) và \(x = - 7\).
d) \(9{x^2} - 6x + 1 = {x^2}\)
\(\begin{array}{l}{\left( {3x - 1} \right)^2} - {x^2} = 0\\\left( {3x - 1 - x} \right)\left( {3x - 1 + x} \right) = 0\\\left( {2x - 1} \right)\left( {4x - 1} \right) = 0.\end{array}\)
Phương trình \(2x - 1 = 0\) có nghiệm duy nhất \(x = \frac{1}{2}\).
Phương trình \(4x - 1 = 0\) có nghiệm duy nhất \(x = \frac{1}{4}\).
Vậy phương trình \(9{x^2} - 6x + 1 = {x^2}\) có hai nghiệm \(x = \frac{1}{2}\) và \(x = \frac{1}{4}\).
Bài tập 1.20 trang 24 SGK Toán 9 tập 1 yêu cầu chúng ta xác định hệ số góc của đường thẳng và vẽ đồ thị hàm số bậc nhất. Để giải bài tập này, chúng ta cần nắm vững định nghĩa về hàm số bậc nhất, hệ số góc và cách vẽ đồ thị hàm số.
Bài tập 1.20 thường bao gồm nhiều câu nhỏ, mỗi câu yêu cầu xác định hệ số góc của một hàm số bậc nhất khác nhau. Chúng ta sẽ đi qua từng câu một:
Hệ số góc của đường thẳng y = 2x - 3 là a = 2. Vì a > 0, đường thẳng đi lên từ trái sang phải.
Hệ số góc của đường thẳng y = -x + 1 là a = -1. Vì a < 0, đường thẳng đi xuống từ trái sang phải.
Hệ số góc của đường thẳng y = 0.5x + 5 là a = 0.5. Vì a > 0, đường thẳng đi lên từ trái sang phải.
Để vẽ đồ thị hàm số bậc nhất, ta thực hiện các bước sau:
Để rèn luyện kỹ năng giải bài tập về hàm số bậc nhất, các em có thể làm thêm các bài tập sau:
Khi giải bài tập về hàm số bậc nhất, các em cần lưu ý:
Hàm số bậc nhất có nhiều ứng dụng trong thực tế, ví dụ như:
Hy vọng bài giải bài tập 1.20 trang 24 SGK Toán 9 tập 1 trên giaitoan.edu.vn sẽ giúp các em hiểu rõ hơn về hàm số bậc nhất và rèn luyện kỹ năng giải toán. Chúc các em học tập tốt!