Chào mừng các em học sinh đến với bài giải bài tập 3.30 trang 71 SGK Toán 9 tập 1 trên giaitoan.edu.vn. Bài tập này thuộc chương Hàm số bậc nhất, một trong những chương quan trọng của Toán 9.
Chúng tôi sẽ cung cấp lời giải chi tiết, dễ hiểu, giúp các em nắm vững phương pháp giải và áp dụng vào các bài tập tương tự. Ngoài ra, chúng tôi còn có các bài giảng video và bài tập luyện tập để các em củng cố kiến thức.
Rút gọn các biểu thức sau (giả thiết các biểu thức đều có nghĩa): a) \(\left( {\frac{1}{{\sqrt a - 1}} + \frac{1}{{a - \sqrt a }}} \right):\frac{{\sqrt a + 1}}{{a - 2\sqrt a + 1}}\); b) \(\frac{{xy + y\sqrt x + \sqrt x + 1}}{{y\sqrt x + 1}}\); c) \(\frac{{\sqrt {{a^3}} - \sqrt {{b^3}} + \sqrt {{a^2}b} - \sqrt {a{b^2}} }}{{\sqrt a + \sqrt b }}\).
Đề bài
Rút gọn các biểu thức sau (giả thiết các biểu thức đều có nghĩa):
a) \(\left( {\frac{1}{{\sqrt a - 1}} + \frac{1}{{a - \sqrt a }}} \right):\frac{{\sqrt a + 1}}{{a - 2\sqrt a + 1}}\);
b) \(\frac{{xy + y\sqrt x + \sqrt x + 1}}{{y\sqrt x + 1}}\);
c) \(\frac{{\sqrt {{a^3}} - \sqrt {{b^3}} + \sqrt {{a^2}b} - \sqrt {a{b^2}} }}{{\sqrt a + \sqrt b }}\).
Phương pháp giải - Xem chi tiết
a) Ta có: \(\frac{1}{{\sqrt a - 1}} + \frac{1}{{a - \sqrt a }} = \frac{{\sqrt a + 1}}{{\sqrt a \left( {\sqrt a - 1} \right)}}\), \(\frac{{\sqrt a + 1}}{{a - 2\sqrt a + 1}} = \frac{{\sqrt a + 1}}{{{{\left( {\sqrt a - 1} \right)}^2}}}\), từ đó rút gọn biểu thức.
b) Ta có: \(xy + y\sqrt x + \sqrt x + 1 = \left( {\sqrt x + 1} \right)\left( {y\sqrt x + 1} \right),\) từ đó rút gọn biểu thức.
c) Ta có: \(\sqrt {{a^3}} - \sqrt {{b^3}} + \sqrt {{a^2}b} - \sqrt {a{b^2}} = \left( {\sqrt a + \sqrt b } \right)\left( {a - b} \right)\), từ đó rút gọn biểu thức.
Lời giải chi tiết
a) \(\left( {\frac{1}{{\sqrt a - 1}} + \frac{1}{{a - \sqrt a }}} \right):\frac{{\sqrt a + 1}}{{a - 2\sqrt a + 1}}\)\( = \frac{{\sqrt a + 1}}{{\sqrt a \left( {\sqrt a - 1} \right)}}.\frac{{{{\left( {\sqrt a - 1} \right)}^2}}}{{\sqrt a + 1}}\)\( = \frac{{\sqrt a - 1}}{{\sqrt a }}\);
b) \(\frac{{xy + y\sqrt x + \sqrt x + 1}}{{y\sqrt x + 1}}\)\( = \frac{{\sqrt x \left( {y\sqrt x + 1} \right) + \left( {y\sqrt x + 1} \right)}}{{y\sqrt x + 1}}\)\( = \frac{{\left( {\sqrt x + 1} \right)\left( {y\sqrt x + 1} \right)}}{{y\sqrt x + 1}}\)\( = \sqrt x + 1\);
c) \(\frac{{\sqrt {{a^3}} - \sqrt {{b^3}} + \sqrt {{a^2}b} - \sqrt {a{b^2}} }}{{\sqrt a + \sqrt b }}\)\( = \frac{{\left( {\sqrt {{a^3}} + \sqrt {{a^2}b} } \right) - \left( {\sqrt {{b^3}} + \sqrt {a{b^2}} } \right)}}{{\sqrt a + \sqrt b }}\)\( = \frac{{\sqrt {{a^2}} \left( {\sqrt a + \sqrt b } \right) - \sqrt {{b^2}} \left( {\sqrt a + \sqrt b } \right)}}{{\sqrt a + \sqrt b }}\)\( = \frac{{\left( {\sqrt a + \sqrt b } \right)\left( {a - b} \right)}}{{\sqrt a + \sqrt b }}\)\( = a - b\)
Bài tập 3.30 trang 71 SGK Toán 9 tập 1 yêu cầu chúng ta giải một bài toán liên quan đến hàm số bậc nhất. Để giải bài tập này một cách hiệu quả, chúng ta cần nắm vững các kiến thức cơ bản về hàm số bậc nhất, bao gồm:
Để giải bài tập 3.30, chúng ta cần phân tích đề bài một cách cẩn thận và xác định các yếu tố cần tìm. Thông thường, bài tập sẽ yêu cầu chúng ta tìm hệ số góc, giao điểm, hoặc xác định phương trình đường thẳng.
Ví dụ, nếu đề bài yêu cầu tìm phương trình đường thẳng đi qua hai điểm A(x1, y1) và B(x2, y2), chúng ta có thể sử dụng công thức:
(y - y1) / (x - x1) = (y2 - y1) / (x2 - x1)
Sau khi tìm được hệ số góc và giao điểm, chúng ta có thể viết phương trình đường thẳng dưới dạng y = ax + b.
Ngoài bài tập 3.30, còn rất nhiều bài tập tương tự liên quan đến hàm số bậc nhất. Dưới đây là một số dạng bài tập thường gặp và phương pháp giải:
Để nắm vững kiến thức về hàm số bậc nhất, các em cần luyện tập thường xuyên và giải nhiều bài tập khác nhau. Các em có thể tìm thấy các bài tập luyện tập trên giaitoan.edu.vn hoặc trong các sách bài tập Toán 9.
Công thức | Mô tả |
---|---|
y = ax + b | Phương trình đường thẳng |
(y - y1) / (x - x1) = (y2 - y1) / (x2 - x1) | Phương trình đường thẳng đi qua hai điểm |
a1 = a2 | Điều kiện hai đường thẳng song song |
a1 * a2 = -1 | Điều kiện hai đường thẳng vuông góc |
Bài tập 3.30 trang 71 SGK Toán 9 tập 1 là một bài tập quan trọng giúp các em củng cố kiến thức về hàm số bậc nhất. Hy vọng với lời giải chi tiết và các phương pháp giải đã trình bày, các em sẽ giải bài tập này một cách dễ dàng và hiệu quả. Chúc các em học tốt!