Chào mừng các em học sinh đến với bài giải bài tập 6.10 trang 14 SGK Toán 9 tập 2 trên giaitoan.edu.vn. Bài tập này thuộc chương Hàm số bậc nhất và là một phần quan trọng trong việc củng cố kiến thức về hàm số.
Chúng tôi sẽ cung cấp lời giải chi tiết, dễ hiểu, giúp các em nắm vững phương pháp giải và áp dụng vào các bài tập tương tự.
Giải các phương trình sau: a) ( - 2{x^2} + x + 1 = 0) b) ({x^2} - x + 4 = 0) c) (4{x^2} - 4x + 1 = 0) d) ( - {x^2} - 4x + 1 = 0) e) ({y^2} - y - 3 = 0) g) ({z^2} - 2sqrt 5 z + 5 = 0)
Đề bài
Giải các phương trình sau:
a) \( - 2{x^2} + x + 1 = 0\)
b) \({x^2} - x + 4 = 0\)
c) \(4{x^2} - 4x + 1 = 0\)
d) \( - {x^2} - 4x + 1 = 0\)
e) \({y^2} - y - 3 = 0\)
g) \({z^2} - 2\sqrt 5 z + 5 = 0\)
Phương pháp giải - Xem chi tiết
Dựa vào: Cho phương trình \(a{x^2} + bx + c = 0(a \ne 0)\) và biệt thức \(\Delta = {b^2} - 4ac\).
- Nếu \(\Delta \)> 0 thì phương trình có hai nghiệm phân biệt:
\({x_1} = \frac{{ - b + \sqrt \Delta }}{{2a}},{x_2} = \frac{{ - b - \sqrt \Delta }}{{2a}}\);
- Nếu \(\Delta \) = 0 thì phương trình có nghiệm kép \({x_1} = {x_2} = - \frac{b}{{2a}}\);
- Nếu \(\Delta \) < 0 thì phương trình vô nghiệm.
Lời giải chi tiết
a) \( - 2{x^2} + x + 1 = 0\)
Ta có \(\Delta = {1^2} - 4.( - 2).1 = 9 > 0\)
Phương trình có hai nghiệm phân biệt: \({x_1} = \frac{{ - 1}}{2},{x_2} = 1\).
b) \({x^2} - x + 4 = 0\)
Ta có \(\Delta = {( - 1)^2} - 4.1.4 = - 15 < 0\)
Phương trình vô nghiệm
c) \(4{x^2} - 4x + 1 = 0\)
Ta có \(\Delta = {( - 4)^2} - 4.4.1 = 0\)
Phương trình có nghiệm kép : \({x_1} = {x_2} = \frac{1}{2}\).
d) \( - {x^2} - 4x + 1 = 0\)
Ta có \(\Delta = {( - 4)^2} - 4.( - 1).1 = 20 > 0\)
Phương trình có hai nghiệm phân biệt: \({x_1} = - 2 - \sqrt 5 ,{x_2} = - 2 + \sqrt 5 \).
e) \({y^2} - y - 3 = 0\)
Ta có \(\Delta = {( - 1)^2} - 4.1.( - 3) = 13 > 0\)
Phương trình có hai nghiệm phân biệt: \({y_1} = \frac{{1 + \sqrt {13} }}{2},{y_2} = \frac{{1 - \sqrt {13} }}{2}\).
g) \({z^2} - 2\sqrt 5 z + 5 = 0\)
Ta có \(\Delta = {( - 2\sqrt 5 )^2} - 4.1.5 = 0\)
Phương trình có nghiệm kép : \({x_1} = {x_2} = \sqrt 5 \).
Bài tập 6.10 trang 14 SGK Toán 9 tập 2 yêu cầu chúng ta xác định hệ số góc của đường thẳng và vẽ đồ thị hàm số. Để giải bài tập này một cách hiệu quả, chúng ta cần nắm vững các khái niệm cơ bản về hàm số bậc nhất, hệ số góc và cách vẽ đồ thị hàm số.
Hàm số bậc nhất có dạng y = ax + b, trong đó a và b là các số thực, a ≠ 0. Hệ số a được gọi là hệ số góc của đường thẳng. Hệ số góc a quyết định độ dốc của đường thẳng:
Hệ số b là tung độ gốc, tức là giao điểm của đường thẳng với trục Oy.
Để xác định hệ số góc của đường thẳng, chúng ta cần tìm hiểu phương trình của đường thẳng. Trong bài tập 6.10, chúng ta có thể xác định hệ số góc bằng cách so sánh phương trình của đường thẳng với dạng y = ax + b.
Để vẽ đồ thị hàm số, chúng ta cần xác định ít nhất hai điểm thuộc đồ thị. Thông thường, chúng ta chọn hai điểm có tọa độ đơn giản, chẳng hạn như giao điểm của đường thẳng với trục Ox và trục Oy.
(Giả sử bài tập 6.10 có nội dung cụ thể là: Xác định hệ số góc của đường thẳng y = 2x - 3 và vẽ đồ thị hàm số này.)
Lời giải:
Hàm số y = 2x - 3 là hàm số bậc nhất với a = 2 và b = -3.
Vậy, hệ số góc của đường thẳng là a = 2.
Để vẽ đồ thị hàm số, ta xác định hai điểm:
Vẽ đường thẳng đi qua hai điểm (3/2, 0) và (0, -3), ta được đồ thị hàm số y = 2x - 3.
Các em có thể luyện tập thêm các bài tập tương tự để củng cố kiến thức về hàm số bậc nhất và cách vẽ đồ thị hàm số. Một số bài tập gợi ý:
Việc nắm vững kiến thức về hàm số bậc nhất và cách vẽ đồ thị hàm số là rất quan trọng trong chương trình Toán 9. Hy vọng bài giải bài tập 6.10 trang 14 SGK Toán 9 tập 2 trên giaitoan.edu.vn đã giúp các em hiểu rõ hơn về chủ đề này. Chúc các em học tập tốt!
Hàm số | Hệ số góc (a) |
---|---|
y = 2x - 3 | 2 |
y = -x + 5 | -1 |