Chào mừng bạn đến với giaitoan.edu.vn, nơi cung cấp lời giải chi tiết và dễ hiểu cho các bài tập Toán 9. Bài viết này sẽ hướng dẫn bạn cách giải bài tập 3.14 trang 64 SGK Toán 9 tập 1 một cách nhanh chóng và hiệu quả.
Chúng tôi luôn cố gắng mang đến những phương pháp giải toán đơn giản, dễ tiếp thu, giúp các em học sinh nắm vững kiến thức và tự tin hơn trong quá trình học tập.
Rút gọn rồi tính giá trị các biểu thức sau: a) \(\sqrt {9{{\left( {4 - 4x + {x^2}} \right)}^2}} \) tại \(x = \sqrt 2 \); b) \(\sqrt {4{a^2}{{\left( {9{b^2} + 6b + 1} \right)}^2}} \) tại \(a = - 2,b = - \sqrt 3 \); c) \({a^2}{b^2}.\sqrt {\frac{{9{b^4}}}{{25{a^6}}}} \) tại \(a = - 3,b = \sqrt 5 \); d) \(\frac{{\sqrt {3{x^6}{y^4}} }}{{\sqrt {27{x^2}{y^2}} }}\) tại \(x = - 3,y = \sqrt 5 \).
Đề bài
Rút gọn rồi tính giá trị các biểu thức sau:
a) \(\sqrt {9{{\left( {4 - 4x + {x^2}} \right)}^2}} \) tại \(x = \sqrt 2 \);
b) \(\sqrt {4{a^2}{{\left( {9{b^2} + 6b + 1} \right)}^2}} \) tại \(a = - 2,b = - \sqrt 3 \);
c) \({a^2}{b^2}.\sqrt {\frac{{9{b^4}}}{{25{a^6}}}} \) tại \(a = - 3,b = \sqrt 5 \);
d) \(\frac{{\sqrt {3{x^6}{y^4}} }}{{\sqrt {27{x^2}{y^2}} }}\) tại \(x = - 3,y = \sqrt 5 \).
Phương pháp giải - Xem chi tiết
a) + Sử dụng kiến thức để rút gọn biểu thức: Với mọi biểu thức đại số A, ta có: \(\sqrt {{A^2}} = \left| A \right|\).
+ Thay \(x = \sqrt 2 \) vào biểu thức vừa rút gọn để tính giá trị biểu thức.
b) + Sử dụng kiến thức để rút gọn biểu thức: Với mọi biểu thức đại số A, ta có: \(\sqrt {{A^2}} = \left| A \right|\).
+ Thay \(a = - 2,b = - \sqrt 3 \) vào biểu thức vừa rút gọn để tính giá trị biểu thức.
c) + Sử dụng kiến thức để rút gọn biểu thức: Với mọi biểu thức đại số A, ta có: \(\sqrt {{A^2}} = \left| A \right|\).
+ Thay \(a = - 3,b = \sqrt 5 \) vào biểu thức vừa rút gọn để tính giá trị biểu thức.
d) + Sử dụng kiến thức để rút gọn biểu thức: Với biểu thức A không âm và biểu thức B dương, ta có: \(\sqrt {\frac{A}{B}} = \frac{{\sqrt A }}{{\sqrt B }}\), \(\sqrt {{A^2}} = \left| A \right|\).
+ Thay \(x = - 3,y = \sqrt 5 \) vào biểu thức vừa rút gọn để tính giá trị biểu thức.
Lời giải chi tiết
a) Ta có:
\(\sqrt {9{{\left( {4 - 4x + {x^2}} \right)}^2}} = \sqrt {9{{\left( {2 - x} \right)}^4}} = \sqrt {{{\left[ {3{{\left( {x - 2} \right)}^2}} \right]}^2}} = 3{\left( {x - 2} \right)^2}\)
Với \(x = \sqrt 2 \) thay vào biểu thức ta có giá trị của biểu thức là:
\(3{\left( {\sqrt 2 - 2} \right)^2} = 3{\left[ {\sqrt 2 \left( {1 - \sqrt 2 } \right)} \right]^2} = 6{\left( {1 - \sqrt 2 } \right)^2}\)
b) Ta có:
\(\sqrt {4{a^2}{{\left( {9{b^2} + 6b + 1} \right)}^2}} = \sqrt {4{a^2}{{\left( {3b + 1} \right)}^4}} = \sqrt {{{\left[ {2a{{\left( {3b + 1} \right)}^2}} \right]}^2}} = 2\left| a \right|{\left( {3b + 1} \right)^2}\)
Với \(a = - 2,b = - \sqrt 3 \) thay vào biểu thức ta có giá trị của biểu thức là:
\(2.\left| { - 2} \right|.{\left( {3\sqrt 3 + 1} \right)^2} = 4{\left( {3\sqrt 3 + 1} \right)^2}\)
c) Ta có:
\({a^2}{b^2}.\sqrt {\frac{{9{b^4}}}{{25{a^6}}}} = {a^2}{b^2}.\sqrt {{{\left( {\frac{{3{b^2}}}{{5{a^3}}}} \right)}^2}} = {a^2}{b^2}.\frac{{3{b^2}}}{{5{{\left| a \right|}^3}}} = \frac{{3{b^4}}}{{5\left| a \right|}}\).
Với \(a = - 3,b = \sqrt 5 \) thay vào biểu thức ta có giá trị của biểu thức là:
\(\frac{{3{{\left( {\sqrt 5 } \right)}^4}}}{{5.\left| { - 3} \right|}} = \frac{{{{3.5}^2}}}{{5.3}} = 5\).
d) Ta có:
\(\frac{{\sqrt {3{x^6}{y^4}} }}{{\sqrt {27{x^2}{y^2}} }} = \sqrt {\frac{{3{x^6}{y^4}}}{{27{x^2}{y^2}}}} = \sqrt {\frac{{{x^4}{y^2}}}{9}} = \sqrt {{{\left( {\frac{{{x^2}y}}{3}} \right)}^2}} = \frac{{{x^2}\left| y \right|}}{3}\)
Với \(x = - 3,y = \sqrt 5 \) thay vào biểu thức ta có giá trị của biểu thức là:
\(\frac{{{{\left( { - 3} \right)}^2}\left| {\sqrt 5 } \right|}}{3} = \frac{{{3^2}\sqrt 5 }}{3} = 3\sqrt 5 \).
Bài tập 3.14 trang 64 SGK Toán 9 tập 1 thuộc chương Hàm số bậc nhất. Bài tập này thường yêu cầu học sinh vận dụng kiến thức về hàm số bậc nhất để giải quyết các bài toán thực tế, hoặc chứng minh các tính chất liên quan đến hàm số.
Đề bài thường có dạng: Cho hàm số y = ax + b. Tìm giá trị của a và b để hàm số thỏa mãn các điều kiện cho trước (ví dụ: đi qua hai điểm, có hệ số góc bằng một giá trị nhất định, cắt trục hoành tại một điểm cho trước, v.v.).
Ví dụ: Cho hàm số y = (m-1)x + 2. Tìm giá trị của m để hàm số đi qua điểm A(1; 3).
Giải:
Vì hàm số đi qua điểm A(1; 3) nên ta có:
3 = (m-1) * 1 + 2
=> 3 = m - 1 + 2
=> 3 = m + 1
=> m = 2
Vậy, giá trị của m là 2.
Để nắm vững kiến thức và kỹ năng giải bài tập 3.14 trang 64 SGK Toán 9 tập 1, bạn nên luyện tập thêm với các bài tập tương tự trong sách giáo khoa và các tài liệu tham khảo khác. Bạn cũng có thể tìm kiếm các bài giải chi tiết trên internet để tham khảo.
Giaitoan.edu.vn hy vọng rằng bài viết này đã giúp bạn hiểu rõ hơn về cách giải bài tập 3.14 trang 64 SGK Toán 9 tập 1. Chúc bạn học tập tốt!
Khái niệm | Giải thích |
---|---|
Hàm số bậc nhất | Hàm số có dạng y = ax + b, trong đó a và b là các số thực, a ≠ 0. |
Hệ số góc | Số a trong hàm số y = ax + b. Nó thể hiện độ dốc của đường thẳng biểu diễn hàm số. |
Giao điểm với trục hoành | Điểm mà đường thẳng biểu diễn hàm số cắt trục hoành (y = 0). |