Chào mừng các em học sinh đến với bài giải bài tập 6.30 trang 23 SGK Toán 9 tập 2 tại giaitoan.edu.vn. Bài tập này thuộc chương hàm số bậc nhất và ứng dụng, một trong những chủ đề quan trọng của chương trình Toán 9.
Chúng tôi cung cấp lời giải chi tiết, dễ hiểu, giúp các em nắm vững kiến thức và kỹ năng giải toán. Bên cạnh đó, chúng tôi còn có nhiều bài tập tương tự và các tài liệu học tập hữu ích khác.
Cho phương trình \(3{x^2} - x - 1 = 0\) có hai nghiệm \({x_1},{x_2}\). Không giải phương trình, hãy tính giá trị của các biểu thức sau: A = \(\left( {3{x_1} - 1} \right)(3{x_2} - 1)\) B = \({x_1}^2 + {x_2}^2\)
Đề bài
Cho phương trình \(3{x^2} - x - 1 = 0\) có hai nghiệm \({x_1},{x_2}\). Không giải phương trình, hãy tính giá trị của các biểu thức sau:
A = \(\left( {3{x_1} - 1} \right)(3{x_2} - 1)\)
B = \({x_1}^2 + {x_2}^2\)
Phương pháp giải - Xem chi tiết
Dựa vào: Nếu \({x_1},{x_2}\) là hai nghiệm của phương trình \(a{x^2} + bx + c = 0(a \ne 0)\) thì:
\(\left\{ {\begin{array}{*{20}{c}}{S = {x_1} + {x_2} = - \frac{b}{a}}\\{P = {x_1}{x_2} = \frac{c}{a}}\end{array}} \right.\)
Lời giải chi tiết
Phương trình \(3{x^2} - x - 1 = 0\) có a = 3; b = -1, c = -1.
\(\Delta = {( - 1)^2} - 4.3.( - 1) = 13 > 0\) nên phương trình có hai nghiệm phân biệt \({x_1},{x_2}\).
Ta có \(S = {x_1} + {x_2} = \frac{1}{3},P = {x_1}{x_2} = - \frac{1}{3}\).
A = \(\left( {3{x_1} - 1} \right)(3{x_2} - 1) = 9{x_1}{x_2} - 3{x_1} - 3{x_2} + 1\)
\(\begin{array}{l} = 9{x_1}{x_2} - 3\left( {{x_1} + {x_2}} \right) + 1\\ = 9.\left( { - \frac{1}{3}} \right) - 3.\frac{1}{3} + 1\\ = - 3\end{array}\)
B = \({x_1}^2 + {x_2}^2\)
Ta có \({\left( {{x_1} + {x_2}} \right)^2} = {x_1}^2 + 2{x_1}{x_2} + {x_2}^2\)
Suy ra \({x_1}^2 + {x_2}^2 = {\left( {{x_1} + {x_2}} \right)^2} - 2{x_1}{x_2} = \frac{1}{3} - 2.\left( { - \frac{1}{3}} \right) = 1.\)
Bài tập 6.30 trang 23 SGK Toán 9 tập 2 yêu cầu chúng ta giải một bài toán thực tế liên quan đến hàm số bậc nhất. Để giải bài toán này một cách hiệu quả, chúng ta cần nắm vững các kiến thức cơ bản về hàm số bậc nhất, bao gồm:
Trước khi bắt đầu giải bài tập, chúng ta cần đọc kỹ đề bài và xác định rõ yêu cầu của bài toán. Trong bài tập 6.30, chúng ta cần xác định hàm số bậc nhất biểu diễn mối quan hệ giữa hai đại lượng và sử dụng hàm số đó để giải quyết các vấn đề được đặt ra.
Đề bài: (Giả sử đề bài cụ thể ở đây, ví dụ: Một người nông dân có một mảnh đất hình chữ nhật. Chiều dài của mảnh đất hơn chiều rộng 5m. Nếu chiều dài tăng thêm 2m và chiều rộng giảm đi 1m thì diện tích mảnh đất tăng thêm 10m2. Tính chiều dài và chiều rộng ban đầu của mảnh đất.)
Lời giải:
Ngoài bài tập 6.30, còn rất nhiều bài tập tương tự liên quan đến hàm số bậc nhất và ứng dụng. Để giải các bài tập này, chúng ta có thể áp dụng các phương pháp sau:
Để nắm vững kiến thức về hàm số bậc nhất và ứng dụng, các em nên luyện tập thêm nhiều bài tập khác nhau. Các em có thể tìm thấy các bài tập này trong SGK Toán 9 tập 2, sách bài tập Toán 9, hoặc trên các trang web học toán online như giaitoan.edu.vn.
Bài tập 6.30 trang 23 SGK Toán 9 tập 2 là một bài tập điển hình về ứng dụng của hàm số bậc nhất trong thực tế. Hy vọng rằng với lời giải chi tiết và các phương pháp giải được trình bày ở trên, các em có thể tự tin giải quyết các bài tập tương tự và đạt kết quả tốt trong môn Toán.