Chào mừng các em học sinh đến với bài giải bài tập 4.22 trang 90 SGK Toán 9 tập 1 trên giaitoan.edu.vn. Bài tập này thuộc chương Hàm số bậc nhất và ứng dụng, một trong những chương quan trọng của Toán 9.
Chúng tôi cung cấp lời giải chi tiết, dễ hiểu, giúp các em nắm vững kiến thức và kỹ năng giải toán. Ngoài ra, chúng tôi còn có các bài tập tương tự để các em luyện tập và củng cố kiến thức.
Tam giác ABC vuông tại A có \(AB = 10cm,BC = 15cm\). Khi đó, sinB bằng A. \(\frac{{\sqrt 5 }}{3}\). B. \(\frac{{\sqrt 3 }}{5}\). C. \(\frac{3}{5}\). D. \(\frac{5}{3}\).
Đề bài
Tam giác ABC vuông tại A có \(AB = 10cm,BC = 15cm\). Khi đó, sinB bằng
A. \(\frac{{\sqrt 5 }}{3}\).
B. \(\frac{{\sqrt 3 }}{5}\).
C. \(\frac{3}{5}\).
D. \(\frac{5}{3}\).
Phương pháp giải - Xem chi tiết
+ Áp dụng định lí Pythagore để tính AC.
+ \(\sin B = \frac{{AC}}{{BC}}\)
Lời giải chi tiết
Tam giác ABC vuông tại A nên
+ \(A{B^2} + A{C^2} = B{C^2}\) (định lí Pythagore),
\(AC = \sqrt {B{C^2} - A{B^2}} = \sqrt {{{15}^2} - {{10}^2}} = 5\sqrt 5 \left( {cm} \right)\)
+ \(\sin B = \frac{{AC}}{{BC}} = \frac{{5\sqrt 5 }}{{15}} = \frac{{\sqrt 5 }}{3}\)
Chọn A
Bài tập 4.22 trang 90 SGK Toán 9 tập 1 yêu cầu học sinh vận dụng kiến thức về hàm số bậc nhất để giải quyết một bài toán thực tế liên quan đến việc xác định phương trình đường thẳng và ứng dụng của nó trong việc tìm điểm giao nhau của các đường thẳng.
Bài tập thường mô tả một tình huống cụ thể, ví dụ như việc xác định phương trình đường thẳng đi qua hai điểm cho trước, hoặc tìm giao điểm của hai đường thẳng. Để giải bài tập này, học sinh cần nắm vững các kiến thức sau:
Để giúp các em hiểu rõ hơn về cách giải bài tập này, chúng ta sẽ cùng nhau phân tích một ví dụ cụ thể. Giả sử bài tập yêu cầu tìm phương trình đường thẳng đi qua hai điểm A(1; 2) và B(3; 4).
Hệ số góc a của đường thẳng đi qua hai điểm A(x1; y1) và B(x2; y2) được tính theo công thức:
a = (y2 - y1) / (x2 - x1)
Trong trường hợp này, ta có:
a = (4 - 2) / (3 - 1) = 2 / 2 = 1
Sau khi đã xác định được hệ số góc a, ta có thể tìm tung độ gốc b bằng cách thay tọa độ của một trong hai điểm A hoặc B vào phương trình đường thẳng y = ax + b.
Ví dụ, ta thay tọa độ điểm A(1; 2) vào phương trình:
2 = 1 * 1 + b
Suy ra b = 1
Sau khi đã xác định được hệ số góc a và tung độ gốc b, ta có thể viết phương trình đường thẳng là:
y = x + 1
Để củng cố kiến thức và kỹ năng giải bài tập về hàm số bậc nhất, các em có thể luyện tập thêm với các bài tập tương tự sau:
Khi giải bài tập về hàm số bậc nhất, các em cần lưu ý những điều sau:
Bài tập 4.22 trang 90 SGK Toán 9 tập 1 là một bài tập quan trọng giúp các em củng cố kiến thức về hàm số bậc nhất và ứng dụng của nó trong việc giải quyết các bài toán thực tế. Hy vọng rằng với lời giải chi tiết và các bài tập tương tự mà chúng tôi cung cấp, các em sẽ nắm vững kiến thức và kỹ năng giải toán một cách hiệu quả.