Chào mừng các em học sinh đến với bài giải bài tập 1.5 trang 7 SGK Toán 9 tập 1 trên giaitoan.edu.vn. Bài tập này thuộc chương trình đại số lớp 9, tập trung vào việc ôn tập các kiến thức về căn bậc hai và căn bậc ba.
Chúng tôi cung cấp lời giải chi tiết, dễ hiểu, giúp các em nắm vững kiến thức và rèn luyện kỹ năng giải toán.
Giải các phương trình sau: a. \(\frac{1}{{x - 7}} + 4 = \frac{{x + 1}}{{7 - x}}\); b. \(\frac{{x + 1}}{{x - 1}} - \frac{{x - 1}}{{x + 1}} = \frac{{3x - 2}}{{x_{}^2 - 1}}\); c. \(\frac{3}{{\left( {x - 2} \right)\left( {x - 3} \right)}} + \frac{2}{{\left( {x - 2} \right)\left( {x - 4} \right)}} = \frac{1}{{\left( {x - 3} \right)\left( {x - 4} \right)}}\).
Đề bài
Giải các phương trình sau:
a. \(\frac{1}{{x - 7}} + 4 = \frac{{x + 1}}{{7 - x}}\);
b. \(\frac{{x + 1}}{{x - 1}} - \frac{{x - 1}}{{x + 1}} = \frac{{3x - 2}}{{x_{}^2 - 1}}\);
c. \(\frac{3}{{\left( {x - 2} \right)\left( {x - 3} \right)}} + \frac{2}{{\left( {x - 2} \right)\left( {x - 4} \right)}} = \frac{1}{{\left( {x - 3} \right)\left( {x - 4} \right)}}\).
Phương pháp giải - Xem chi tiết
+ Tìm điều kiện xác định của phương trình.
+ Quy đồng mẫu hai vế của phương trình rồi bỏ mẫu.
+ Giải phương trình vừa nhận được.
+ Kiểm tra điều kiện xác định và kết luận nghiệm của phương trình ban đầu.
Lời giải chi tiết
a. \(\frac{1}{{x - 7}} + 4 = \frac{{x + 1}}{{7 - x}}\)
Điều kiện xác định của phương trình là \(x \ne 7\).
Quy đồng hai vế và bỏ mẫu, ta được:
\(\begin{array}{l}\frac{1}{{x - 7}} + \frac{{4\left( {x - 7} \right)}}{{x - 7}} = - \frac{{x + 1}}{{x - 7}}\\1 + 4x - 28 + x + 1 = 0\\5x - 26 = 0\\x = \frac{{26}}{5}\end{array}\)
Ta thấy \(x = \frac{{26}}{5}\) thỏa mãn điều kiện xác định.
Vậy phương trình đã cho có nghiệm duy nhất \(x = \frac{{26}}{5}\).
b. \(\frac{{x + 1}}{{x - 1}} - \frac{{x - 1}}{{x + 1}} = \frac{{3x - 2}}{{x_{}^2 - 1}}\)
Điều kiện xác định của phương trình là \(x \ne 1\) và \(x \ne - 1\).
Quy đồng hai vế và bỏ mẫu, ta được:
\(\begin{array}{l}\frac{{\left( {x + 1} \right)\left( {x + 1} \right)}}{{x_{}^2 - 1}} - \frac{{\left( {x - 1} \right)\left( {x - 1} \right)}}{{x_{}^2 - 1}} = \frac{{3x - 2}}{{x_{}^2 - 1}}\\x_{}^2 + 2x + 1 - \left( {x_{}^2 - 2x + 1} \right) = 3x - 2\\x_{}^2 + 2x + 1 - x_{}^2 + 2x - 1 - 3x + 2 = 0\\x = - 2\end{array}\)
Ta thấy \(x = - 2\) thỏa mãn điều kiện xác định.
Vậy phương trình đã cho có nghiệm duy nhất \(x = - 2\).
c. \(\frac{3}{{\left( {x - 2} \right)\left( {x - 3} \right)}} + \frac{2}{{\left( {x - 2} \right)\left( {x - 4} \right)}} = \frac{1}{{\left( {x - 3} \right)\left( {x - 4} \right)}}\)
Điều kiện xác định của phương trình là \(x \ne 2,x \ne 3\) và \(x \ne 4\).
Quy đồng hai vế và bỏ mẫu, ta được:
\(\begin{array}{l}\frac{{3\left( {x - 4} \right)}}{{\left( {x - 2} \right)\left( {x - 3} \right)\left( {x - 4} \right)}} + \frac{{2\left( {x - 3} \right)}}{{\left( {x - 2} \right)\left( {x - 3} \right)\left( {x - 4} \right)}} = \frac{{x - 2}}{{\left( {x - 2} \right)\left( {x - 3} \right)\left( {x - 4} \right)}}\\3x - 12 + 2x - 6 = x - 2\\5x - x = 12 + 6 - 2\\4x = 10\\x = \frac{5}{2}\end{array}\)
Ta thấy \(x = \frac{5}{2}\) thỏa mãn điều kiện xác định.
Vậy phương trình đã cho có nghiệm duy nhất \(x = \frac{5}{2}\).
Bài tập 1.5 trang 7 SGK Toán 9 tập 1 là một bài tập ôn tập quan trọng, giúp học sinh củng cố kiến thức về căn bậc hai, căn bậc ba và các tính chất liên quan. Để giải bài tập này một cách hiệu quả, học sinh cần nắm vững các khái niệm cơ bản và các quy tắc tính toán.
Trước khi đi vào giải bài tập, chúng ta cùng ôn lại một số kiến thức lý thuyết quan trọng:
Bài tập 1.5 thường bao gồm các dạng bài sau:
Ví dụ minh họa:
Tính giá trị của biểu thức: √(9) + 3√(-8)
Giải:
Để giải các bài tập về căn bậc hai, căn bậc ba một cách nhanh chóng và chính xác, học sinh có thể áp dụng một số mẹo sau:
Để nâng cao kỹ năng giải bài tập về căn bậc hai, căn bậc ba, học sinh nên luyện tập thêm với các bài tập tương tự trong SGK và các tài liệu tham khảo khác. Việc luyện tập thường xuyên sẽ giúp học sinh nắm vững kiến thức và tự tin hơn khi giải các bài tập khó.
Bài tập 1.5 trang 7 SGK Toán 9 tập 1 là một bài tập quan trọng, giúp học sinh củng cố kiến thức về căn bậc hai, căn bậc ba. Hy vọng với những hướng dẫn chi tiết và các mẹo giải bài tập trên, các em học sinh sẽ giải bài tập này một cách dễ dàng và hiệu quả. Chúc các em học tốt!