Chào mừng các em học sinh đến với bài giải chi tiết mục 2 trang 98, 99 SGK Toán 11 tập 2 tại giaitoan.edu.vn. Bài viết này sẽ cung cấp lời giải đầy đủ, dễ hiểu cho từng bài tập, giúp các em nắm vững kiến thức và tự tin hơn trong quá trình học tập.
Chúng tôi luôn cố gắng mang đến những tài liệu học tập chất lượng cao, hỗ trợ tối đa cho các em học sinh trên con đường chinh phục môn Toán.
Xét phép thử gieo một đồng xu và con xúc xắc (đều cân đối và đồng chất).
Xét phép thử gieo một đồng xu và con xúc xắc (đều cân đối và đồng chất).
a) Tính xác suất của các biến cố:
A: "Đồng xu xuất hiện mặt ngửa"
B: "Con xúc xắc xuất hiện mặt lẻ".
b) So sánh P (AB) và P (A).P (B).
Phương pháp giải:
Công thức xác suất: \(P\left( A \right) = \frac{{n\left( A \right)}}{{n\left( \Omega \right)}}\).
Lời giải chi tiết:
a)
\(\begin{array}{l}P\left( A \right) = \frac{1}{2}\\P\left( B \right) = \frac{1}{2}\end{array}\)
b) \(P\left( {AB} \right) = \frac{1}{4} = P\left( A \right).P\left( B \right)\)
Có hai hộp chứa các viên bi. Hộp thứ nhất chứa 7 viên bi màu vàng, 3 viên bi màu đỏ. Hộp thứ hai chứa 3 viên bi màu vàng, 7 viên bi màu đỏ. Từ mỗi hộp lấy ngẫu nhiên một viên bi.
a) Tính xác suất sao cho hai viên bi lấy ra cùng màu.
b) Tính xác suất sao cho hai viên bi lấy ra khác màu.
Phương pháp giải:
Biến cố ở phần a và b là hai biến cố đối.
Lời giải chi tiết:
\(n\left( \Omega \right) = 10.10 = 100\)
a) Gọi A là biến cố “hai viên bi lấy ra cùng màu”
\(n\left( A \right) = 7.3 + 3.7 = 42\)
\( \Rightarrow P\left( A \right) = \frac{{42}}{{100}} = \frac{{21}}{{50}}\)
b) Gọi B là biến cố “hai viên bi lấy ra khác màu”
\(P\left( B \right) = 1 - P\left( A \right) = 1 - \frac{{21}}{{50}} = \frac{{29}}{{50}}\)
Một chiếc máy có hai động cơ I và II hoạt động độc lập với nhau. Xác suất đề động cơ I và động cơ II chạy tốt lần lượt là 0,85 và 0,9. Hãy tính các xác suất đề:
a) Cả hai động cơ đều chạy tốt;
b) Cả hai động cơ đều chạy không tốt;
c) Có ít nhất một động cơ chạy tốt.
Phương pháp giải:
A và B là hai biến cố độc lập nên \(P\left( {AB} \right) = P\left( A \right).P\left( B \right)\).
C và D là hai biến cố đối thì \(P\left( C \right) = 1 - P\left( D \right)\)
Lời giải chi tiết:
Xét các biến cố sau:
A: “Động cơ I chạy tốt”
B: “Động cơ II chạy tốt”
C: “Cả hai động cơ đều chạy tốt”
D: “Cả hai động cơ đều chạy không tốt”
E: “Có ít nhất một động cơ chạy tốt”
a) \(P\left( C \right) = P\left( {AB} \right) = P\left( A \right).P\left( B \right) = 0,85.0,9 = 0,765\)
b) \(P\left( D \right) = P\left( {\overline A \overline B } \right) = \left( {1 - P\left( A \right)} \right)\left( {1 - P\left( B \right)} \right) = \left( {1 - 0,85} \right)\left( {1 - 0,9} \right) = 0,015\)
c) \(P\left( E \right) = 1 - P\left( D \right) = 1 - 0,015 = 0,985\)
Mục 2 của SGK Toán 11 tập 2 thường tập trung vào một chủ đề cụ thể trong chương trình học. Để giải quyết các bài tập trong mục này một cách hiệu quả, học sinh cần nắm vững lý thuyết, công thức và phương pháp giải liên quan. Bài viết này sẽ đi sâu vào từng bài tập, cung cấp lời giải chi tiết và phân tích các bước thực hiện.
Đề bài: (Giả định một đề bài cụ thể ở đây)
Lời giải:
Giải thích: (Giải thích chi tiết từng bước giải)
Đề bài: (Giả định một đề bài cụ thể ở đây)
Lời giải:
Lưu ý: (Các lưu ý quan trọng khi giải bài tập)
Đề bài: (Giả định một đề bài cụ thể ở đây)
Lời giải:
(Lời giải chi tiết cho bài tập 3)
Đề bài: (Giả định một đề bài cụ thể ở đây)
Lời giải:
(Lời giải chi tiết cho bài tập 4)
Việc giải các bài tập trong mục 2 trang 98, 99 SGK Toán 11 tập 2 đòi hỏi sự hiểu biết vững chắc về lý thuyết và khả năng vận dụng linh hoạt các công thức. Để nâng cao kỹ năng giải toán, các em nên:
Công thức | Mô tả |
---|---|
(Công thức 1) | (Mô tả công thức 1) |
(Công thức 2) | (Mô tả công thức 2) |
Hy vọng bài viết này đã giúp các em hiểu rõ hơn về cách giải các bài tập trong mục 2 trang 98, 99 SGK Toán 11 tập 2. Chúc các em học tập tốt!