Chào mừng bạn đến với giaitoan.edu.vn, nơi cung cấp lời giải chi tiết và dễ hiểu cho các bài tập Toán 11. Trong bài viết này, chúng tôi sẽ cùng bạn khám phá và giải quyết các bài tập trong mục 2 trang 54 SGK Toán 11 tập 2.
Mục tiêu của chúng tôi là giúp bạn hiểu rõ bản chất của từng bài toán, từ đó nâng cao khả năng tự giải quyết các vấn đề tương tự trong tương lai.
Ta biết hình hộp chữ nhật có 6 mặt là các hình chữ nhật. Quan sát một bể nuôi cá cảnh hình hộp chữ nhật (Hình 8.3).
Ta biết hình hộp chữ nhật có 6 mặt là các hình chữ nhật. Quan sát một bể nuôi cá cảnh hình hộp chữ nhật (Hình 8.3). Xem mỗi cạnh của bể nuôi cá là hình ảnh thể hiện một đường thẳng. Hãy chỉ ra những đường thẳng tạo với \(AA'\) một góc \({90^o}\). Trong mỗi trường hợp, hãy cho biết vị trí tương đối của \(AA'\) và đường thẳng đã chỉ ra.
Phương pháp giải:
Để xác định góc giữa hai đường thẳng \(a,b\) ta có thể lấy điểm \(O\) thuộc đường thẳng \(a\) kẻ đường thẳng \(b'\) song song với \(b\). Khi đó \(\left( {a,b} \right) = \left( {a,b'} \right)\)
Dựa vào hình chữ nhật để tìm ra các góc vuông liên quan đến cạnh \(AA'\)
Lời giải chi tiết:
+) Ta có \(AA' \bot AB,AA' \bot AD,AA' \bot A'B',AA' \bot A'D'\) và \(AA'\) cắt các đường thẳng \(AB,AD,A'B',A'D'\)
+) Ta có \(AA' \bot CD,C'D',BC,B'C'\) và \(AA'\) chéo nhau với \(CD,C'D',BC,B'C'\)
Cho tứ diện \(ABCD\) và điểm \(M\) thuộc cạnh \(AD\). Mặt phẳng \(\left( \alpha \right)\) đi qua \(M\), song song với \(AB\) và \(CD\). Mặt phẳng \(\left( \alpha \right)\) cắt các cạnh \(BD,CB,AC\) lần lượt tại \(N,P,Q\) (Hình 8.5). Biết \(MNPQ\) là một hình chữ nhật. Chứng minh rằng \(AB \bot CD\).
Phương pháp giải:
Để xác định góc giữa hai đường thẳng \(a,b\) ta có thể lấy điểm \(O\) thuộc đường thẳng \(a\) kẻ đường thẳng \(b'\) song song với \(b\). Khi đó \(\left( {a,b} \right) = \left( {a,b'} \right)\)
Định nghĩa: Góc giữa hai đường thẳng \(a,b\) là góc giữa hai đường thẳng \(a',b'\) cùng đi qua một điểm và lần lượt song song hoặc trùng với \(a,b\).
Chứng minh \(AB//PQ,CD//MQ\). Suy ra \(\left( {AB,CD} \right) = \left( {PQ,MQ} \right)\)
Lời giải chi tiết:
Ta có \(\left\{ \begin{array}{l}AB//\left( \alpha \right)\\\left( \alpha \right) \cap \left( {ABC} \right) = PQ\end{array} \right. \Rightarrow AB//PQ\)
Tương tự \(CD//MQ\)
Suy ra \(\left( {AB,CD} \right) = \left( {PQ,MQ} \right)\). Mà \(MNPQ\) là một hình chữ nhật nên \(\widehat {MQP} = {90^o}\)
Vậy \(\left( {AB,CD} \right) = {90^o} \Rightarrow AB \bot CD\)
Mục 2 trang 54 SGK Toán 11 tập 2 thường tập trung vào một chủ đề cụ thể trong chương trình học. Để giải quyết hiệu quả các bài tập trong mục này, học sinh cần nắm vững kiến thức lý thuyết liên quan, bao gồm định nghĩa, tính chất, định lý và các công thức quan trọng. Việc ôn tập kỹ lưỡng lý thuyết là bước chuẩn bị quan trọng trước khi bắt tay vào giải bài tập.
Tùy thuộc vào chương trình học, Mục 2 trang 54 có thể bao gồm các nội dung sau:
Để giải bài tập Mục 2 trang 54 SGK Toán 11 tập 2 một cách hiệu quả, bạn có thể áp dụng các phương pháp sau:
Bài tập: Cho hai điểm A(1; 2) và B(3; 4). Tìm tọa độ của điểm C sao cho C là ảnh của B qua phép tịnh tiến theo vectơ v = (2; -1).
Giải:
Gọi C(x; y) là ảnh của B qua phép tịnh tiến theo vectơ v = (2; -1). Khi đó, ta có:
x = 3 + 2 = 5
y = 4 - 1 = 3
Vậy, tọa độ của điểm C là (5; 3).
Trong quá trình giải bài tập, bạn cần chú ý các điểm sau:
Để học tập và ôn luyện Toán 11 hiệu quả, bạn có thể tham khảo các tài liệu sau:
Giải mục 2 trang 54 SGK Toán 11 tập 2 đòi hỏi sự nắm vững kiến thức lý thuyết và khả năng vận dụng linh hoạt các phương pháp giải bài tập. Hy vọng rằng, với những hướng dẫn chi tiết và ví dụ minh họa trong bài viết này, bạn sẽ tự tin hơn trong việc giải quyết các bài tập Toán 11.