Bài 7.17 trang 50 SGK Toán 11 tập 2 là một bài tập quan trọng trong chương trình học Toán 11, tập trung vào việc rèn luyện kỹ năng giải bài toán liên quan đến đạo hàm và ứng dụng của đạo hàm trong việc khảo sát hàm số. Bài tập này đòi hỏi học sinh phải nắm vững kiến thức về các khái niệm đạo hàm, quy tắc tính đạo hàm và cách sử dụng đạo hàm để tìm cực trị, khoảng đơn điệu của hàm số.
Tại giaitoan.edu.vn, chúng tôi cung cấp lời giải chi tiết, dễ hiểu cho Bài 7.17 trang 50 SGK Toán 11 tập 2, giúp học sinh hiểu rõ phương pháp giải và tự tin làm bài tập.
Tính đạo hàm cấp hai của các hàm số sau:
Đề bài
Tính đạo hàm cấp hai của các hàm số sau:
a) \(y = {x^3} - 2\sin 3x\)
b) \(y = x{e^x}\)
Phương pháp giải - Xem chi tiết
a)+) Tính \(y'\)
+) Sau đó tính đạo hàm của \(y'\) ta thu được \(y''\)
+) Áp dụng công thức \(\left( {\cos u} \right)' = - u'.\sin u;\,\,\,\left( {\sin u} \right)' = u'.\cos u\)
b) Áp dụng công thức \(\left( {u.v} \right) = u'.v + v'.u\) và \(\left( {{e^x}} \right)' = {e^x}\)
Lời giải chi tiết
a) \(y' = 3{x^2} - 2.\cos 3x.\left( {3x} \right)' = 3{x^2} - 6\cos 3x\)
\(y'' = 6x + 6.\sin 3x.\left( {3x} \right)' = 6x + 18\sin 3x\)
b) \(y' = x'.{e^x} + \left( {{e^x}} \right)'.x = {e^x} + x{e^x}\)
\(y'' = \left( {{e^x}} \right)' + x'.{e^x} + \left( {{e^x}} \right)'.x = {e^x} + {e^x} + x{e^x} = 2{e^x} + x{e^x}\)
Bài 7.17 trang 50 SGK Toán 11 tập 2 yêu cầu học sinh giải một bài toán thực tế liên quan đến việc tối ưu hóa một đại lượng nào đó bằng cách sử dụng đạo hàm. Để giải bài toán này, học sinh cần thực hiện các bước sau:
Giả sử bài toán yêu cầu tìm kích thước của một hình chữ nhật có diện tích cho trước sao cho chu vi nhỏ nhất. Gọi chiều dài và chiều rộng của hình chữ nhật lần lượt là x và y. Diện tích của hình chữ nhật là xy = S (S là hằng số). Chu vi của hình chữ nhật là P = 2(x + y). Ta cần tìm x và y sao cho P nhỏ nhất.
Từ xy = S, ta có y = S/x. Thay vào công thức tính chu vi, ta được P = 2(x + S/x). Đạo hàm của P theo x là P' = 2(1 - S/x^2). Giải phương trình P' = 0, ta được x^2 = S, suy ra x = √S (vì x > 0). Khi đó, y = S/√S = √S. Vậy, hình chữ nhật có chu vi nhỏ nhất là hình vuông có cạnh bằng √S.
Khi giải các bài toán tối ưu hóa bằng đạo hàm, cần chú ý các điểm sau:
Ngoài SGK Toán 11 tập 2, học sinh có thể tham khảo thêm các tài liệu sau để hiểu rõ hơn về đạo hàm và ứng dụng của đạo hàm:
Giaitoan.edu.vn luôn đồng hành cùng học sinh trong quá trình học tập môn Toán. Chúng tôi hy vọng rằng với lời giải chi tiết và phương pháp giải rõ ràng cho Bài 7.17 trang 50 SGK Toán 11 tập 2, học sinh sẽ tự tin hơn trong việc giải các bài toán tương tự và đạt kết quả tốt trong môn học.
Việc nắm vững kiến thức về đạo hàm và ứng dụng của đạo hàm không chỉ giúp học sinh giải quyết các bài toán trong SGK mà còn là nền tảng quan trọng cho việc học tập các môn học khác liên quan đến toán học và khoa học tự nhiên.