Chào mừng bạn đến với giaitoan.edu.vn, nơi cung cấp lời giải chi tiết và dễ hiểu cho các bài tập Toán 11 tập 1. Chúng tôi hiểu rằng việc giải bài tập có thể gặp nhiều khó khăn, đặc biệt là với những chủ đề mới.
Do đó, chúng tôi đã biên soạn bộ giải bài tập này với mục đích giúp các bạn học sinh nắm vững kiến thức, rèn luyện kỹ năng giải toán và đạt kết quả tốt nhất trong học tập.
Hàm số (fleft( x right) = {x^2}) có đồ thị như Hình 1.32.
Hàm số \(f\left( x \right) = {x^2}\) có đồ thị như Hình 1.32.
a) So sánh \(f\left( { - 1} \right)\) và \(f\left( 1 \right)\) , \(f\left( { - 2} \right)\)và \(f\left( 2 \right)\), \(f\left( { - x} \right)\) và \(f\left( x \right)\).
b) Đồ thị của hàm số nhận trục nào làm trục đối xứng?
Hàm số \(y = f\left( x \right) = x\), với \(x \in \left[ { - 2;2} \right]\), có đồ thị như Hình 1.33.
a) So sánh \(f\left( { - 1} \right)\) và \(f\left( 1 \right)\) , \(f\left( { - 2} \right)\)và \(f\left( 2 \right)\), \(f\left( { - x} \right)\) và \(f\left( x \right)\) khi \(x \in \left[ { - 2;2} \right]\).
b) Đồ thị của hàm số nhận điểm nào làm tâm đối xứng?
Phương pháp giải:
Thay lần lượt \(x = - 1,1, - 2,2, - x,x\) vào hàm số.
Lời giải chi tiết:
Hình 1.32
a)
\(\begin{array}{l}f\left( { - 1} \right) = 1 = f\left( 1 \right)\\f\left( { - 2} \right) = 4 = f\left( 2 \right)\\f\left( { - x} \right) = {\left( { - x} \right)^2} = {x^2} = f\left( x \right)\end{array}\)
b) Đồ thị của hàm số nhận trục Oy làm trục đối xứng.
Hình 1.33
a)
\(\begin{array}{l}f\left( { - 1} \right) = - 1 = - f\left( 1 \right)\\f\left( { - 2} \right) = - 2 = - f\left( 2 \right)\\f\left( { - x} \right) = - x = - f\left( x \right)\end{array}\)
b) Đồ thị của hàm số nhận điểm \(O\left( {0;0} \right)\) làm tâm đối xứng.
Xác định hàm số chẵn, hàm số lẻ trong các hàm số sau:
a) \(y = f\left( x \right) = 4x - 3;\)
b) \(y = g\left( x \right) = 2{x^2} - 6;\)
c) \(y = h\left( x \right) = {x^3} - 3x.\)
Phương pháp giải:
Thay \( - x\) vào hàm số.
\(f\left( { - x} \right) = f\left( x \right)\) là hàm số chẵn, \(f\left( { - x} \right) = - f\left( x \right)\) là hàm số lẻ.
Lời giải chi tiết:
a)
\(\begin{array}{l}D = \mathbb{R}\\\forall x \in D \Rightarrow - x \in D\end{array}\)
\(f\left( { - x} \right) = 4\left( { - x} \right) - 3 = - 4x - 3 \ne f\left( x \right) = 4x - 3\)
Vậy hàm số đã cho không phải hàm số chẵn cũng không phải hàm số lẻ.
b)
\(\begin{array}{l}D = \mathbb{R}\\\forall x \in D \Rightarrow - x \in D\end{array}\)
\(g\left( { - x} \right) = 2{\left( { - x} \right)^2} - 6 = 2{x^2} - 6 = g\left( x \right)\)
Vậy hàm số đã cho là hàm số chẵn.
c)
\(\begin{array}{l}D = \mathbb{R}\\\forall x \in D \Rightarrow - x \in D\end{array}\)
\(h\left( { - x} \right) = {\left( { - x} \right)^3} - 3\left( { - x} \right) = - {x^3} + 3x = - \left( {{x^3} - 3x} \right) = - h\left( x \right)\)
Vậy hàm số đã cho là hàm số lẻ.
Cho hàm số \(y = f\left( x \right)\) có đồ thị như Hình 1.34.
a) So sánh \(f\left( { - 4} \right),f\left( 0 \right),f\left( 4 \right),f\left( 8 \right).\).
b) Tìm một số \(T \ne 0\) sao cho \(f\left( {x + T} \right) = f\left( x \right)\), với x = -6, x = -2, x = 2, x = 6.
c) Nhận xét đồ thị của hàm số trên các đoạn \(\left[ { - 4;0} \right],\left[ {0;4} \right]\) và \(\left[ {4;8} \right]\).
Phương pháp giải:
a) Tìm tung độ khi hoành độ bằng -4, 0, 4, 8 và so sánh các hoành độ này.
b) Tìm tung độ khi hoành độ bằng -6, -2, 2, 6 và so sánh các hoành độ này. Nhận xét khoảng cách giữa các số -6, -2, 2, 6.
c) Quan sát hình dạng đồ thị trên các đoạn \(\left[ { - 4;0} \right],\left[ {0;4} \right]\) và \(\left[ {4;8} \right]\).
Lời giải chi tiết:
a) \(f\left( { - 4} \right) = f\left( 0 \right) = f\left( 4 \right) = f\left( 8 \right) = 1\)
b) \(f\left( { - 6} \right) = f\left( { - 2} \right) = f\left( 2 \right) = f\left( 6 \right) = 3\)
Vậy T là bội của 4.
c) Đồ thị hàm số trên các đoạn \(\left[ { - 4;0} \right],\left[ {0;4} \right]\) và \(\left[ {4;8} \right]\) giống nhau.
Hàm số hằng \(y = f\left( x \right) = c\) (c là hằng số) có phải là một hàm số tuần hoàn không? Vì sao?
Phương pháp giải:
Hàm hằng là hàm số mà y không thay đổi \(\forall x\).
Lời giải chi tiết:
Hàm hằng là hàm số mà y không thay đổi \(\forall x\) nên hàm hằng là hàm số tuần hoàn.
Mục 1 của SGK Toán 11 tập 1 thường tập trung vào các kiến thức cơ bản về giới hạn dãy số, giới hạn hàm số, và các ứng dụng của giới hạn trong việc tính toán. Việc nắm vững các khái niệm này là nền tảng quan trọng cho việc học tập các chương trình Toán học nâng cao hơn.
Mục 1 thường bao gồm các nội dung sau:
Dưới đây là hướng dẫn giải chi tiết các bài tập trong Mục 1, trang 20, 21, 22, 23, 24, 25, 26, 27, 28 SGK Toán 11 tập 1:
Khi giải các bài tập về giới hạn, bạn cần lưu ý những điều sau:
Ngoài SGK Toán 11 tập 1, bạn có thể tham khảo thêm các tài liệu sau để học tập và rèn luyện kỹ năng giải toán:
Hy vọng rằng bộ giải bài tập này sẽ giúp bạn học tập và đạt kết quả tốt nhất trong môn Toán 11. Chúc bạn thành công!