Bài 3.7 trang 74 SGK Toán 11 tập 1 thuộc chương trình học Toán 11, tập trung vào việc giải các phương trình lượng giác cơ bản. Bài tập này giúp học sinh rèn luyện kỹ năng biến đổi lượng giác và áp dụng các công thức để tìm nghiệm của phương trình.
Tại giaitoan.edu.vn, chúng tôi cung cấp lời giải chi tiết, dễ hiểu cùng với các phương pháp giải khác nhau để bạn có thể hiểu rõ bản chất của bài toán và tự tin giải các bài tập tương tự.
Tính các giới hạn sau:
Đề bài
Tính các giới hạn sau:
a, \(\mathop {\lim }\limits_{x \to 0} \frac{{{x^2} + 3x + 5}}{{x + 1}}\)
b, \(\mathop {\lim }\limits_{x \to 2} \frac{{{x^2} + x - 6}}{{{x^2} - 4}}\)
c, \(\mathop {\lim }\limits_{x \to - 2} \frac{{\sqrt {x + 11} - 3}}{{x + 2}}\)
d, \(\mathop {\lim }\limits_{x \to - \infty } \frac{{3{x^2} + x + 10}}{{2{x^2} - 1}}\)
e, \(\mathop {\lim }\limits_{x \to - \infty } \frac{{5{x^3} + 9}}{{{x^4} + 1}}\)
g, \(\mathop {\lim }\limits_{x \to - \infty } \frac{{\sqrt {{x^2} + 1} }}{x}\)
Phương pháp giải - Xem chi tiết
a, Tính giới hạn tử và mẫu để được giới hạn hàm số
b, Phân tích tử và rút gọn rồi tính giới hạn
c, Nhân liên hợp tử rồi rút gọn và tính giới hạn
d, e, Chia cả tử và mẫu cho x với bậc cao nhất và tính giới hạn
e, Đưa x ra khỏi dấu căn và rút gọn để tính giới hạn
Lời giải chi tiết
a, Ta có: \(\mathop {\lim }\limits_{x \to 0} ({x^2} + 3x + 5) = 5\) và \(\mathop {\lim }\limits_{x \to 0} (x + 1) = 1\)
Vậy \(\mathop {\lim }\limits_{x \to 0} \frac{{{x^2} + 3x + 5}}{{x + 1}} = 5\)
b, Ta có : \(f(x) = \frac{{{x^2} + x - 6}}{{{x^2} - 4}} = \frac{{(x + 3).(x - 2)}}{{(x - 2).(x + 2)}} = \frac{{x + 3}}{{x + 2}}\)
\(\mathop {\lim }\limits_{x \to 2} (x + 3) = 5\) và \(\mathop {\lim }\limits_{x \to 2} (x + 2) = 4\)
Vậy \(\mathop {\lim }\limits_{x \to 2} \frac{{{x^2} + x - 6}}{{{x^2} - 4}} = \frac{5}{4}\).
c, Ta có: \(f(x) = \frac{{\sqrt {x + 11} - 3}}{{x + 2}} = \frac{{(\sqrt {x + 11} - 3)(\sqrt {x + 11} + 3)}}{{x + 2}} = \frac{{x + 11 - {3^2}}}{{x + 2}} = 1\)
\(\mathop {\lim }\limits_{x \to - 2} 1 = 1\)
Vậy \(\mathop {\lim }\limits_{x \to - 2} \frac{{\sqrt {x + 11} - 3}}{{x + 2}} = 1\)
d, Ta có: \(\mathop {\lim }\limits_{x \to - \infty } \frac{{3{x^2} + x + 10}}{{2{x^2} - 1}} = \mathop {\lim }\limits_{x \to - \infty } \frac{{3 + \frac{1}{x} + \frac{{10}}{{{x^2}}}}}{{2 - \frac{1}{{{x^2}}}}} = \frac{3}{2}\)
e, Ta có: \(\mathop {\lim }\limits_{x \to - \infty } \frac{{5{x^3} + 9}}{{{x^4} + 1}} = \mathop {\lim }\limits_{x \to - \infty } \frac{{5 + \frac{9}{{{x^4}}}}}{{1 + \frac{1}{{{x^4}}}}} = 5\)
g, Ta có: \(\mathop {\lim }\limits_{x \to - \infty } \frac{{\sqrt {{x^2} + 1} }}{x} = \mathop {\lim }\limits_{x \to - \infty } \frac{{\left| x \right|.\sqrt {1 + \frac{1}{{{x^2}}}} }}{x} = \mathop {\lim }\limits_{x \to - \infty } \frac{{ - x.\sqrt {1 + \frac{1}{{{x^2}}}} }}{x} = \mathop {\lim }\limits_{x \to - \infty } ( - \sqrt {1 + \frac{1}{{{x^2}}}} ) = - 1\).
Bài 3.7 trang 74 SGK Toán 11 tập 1 yêu cầu giải các phương trình lượng giác sau:
Để giải phương trình này, ta cần tìm các giá trị của (x - π/6) sao cho sin(x - π/6) = -√3/2. Ta biết rằng sin(-π/3) = -√3/2 và sin(4π/3) = -√3/2. Do đó:
Giải hai phương trình trên, ta được:
Để giải phương trình này, ta cần tìm các giá trị của (2x + π/3) sao cho cos(2x + π/3) = 0. Ta biết rằng cos(π/2) = 0 và cos(3π/2) = 0. Do đó:
Giải hai phương trình trên, ta được:
Để giải phương trình này, ta cần tìm các giá trị của (x + π/4) sao cho tan(x + π/4) = 1. Ta biết rằng tan(π/4) = 1. Do đó:
Giải phương trình trên, ta được:
Để giải phương trình này, ta cần tìm các giá trị của (3x - π/2) sao cho cot(3x - π/2) = -1. Ta biết rằng cot(3π/4) = -1. Do đó:
Giải phương trình trên, ta được:
Phương trình lượng giác có ứng dụng rộng rãi trong nhiều lĩnh vực của khoa học và kỹ thuật, bao gồm:
Để củng cố kiến thức về giải phương trình lượng giác, bạn có thể làm thêm các bài tập sau:
Hy vọng với lời giải chi tiết và hướng dẫn trên, bạn đã hiểu rõ cách giải Bài 3.7 trang 74 SGK Toán 11 tập 1. Chúc bạn học tốt!