Logo Header
  1. Môn Toán
  2. Lý thuyết Giới hạn của hàm số - SGK Toán 11 Cùng khám phá

Lý thuyết Giới hạn của hàm số - SGK Toán 11 Cùng khám phá

Lý thuyết Giới hạn của hàm số - Nền tảng Toán học 11

Chào mừng bạn đến với bài học về Lý thuyết Giới hạn của hàm số, một trong những chủ đề quan trọng nhất của chương trình Toán 11 theo sách giáo khoa. Bài học này sẽ cung cấp cho bạn kiến thức cơ bản và nâng cao về giới hạn, giúp bạn giải quyết các bài toán liên quan một cách hiệu quả.

Tại giaitoan.edu.vn, chúng tôi cam kết mang đến cho bạn trải nghiệm học tập trực tuyến tốt nhất với các bài giảng được trình bày rõ ràng, dễ hiểu và nhiều bài tập thực hành đa dạng.

I. Giới hạn của hàm số tại một điểm

I. Giới hạn của hàm số tại một điểm

1. Giới hạn hữu hạn của hàm số tại một điểm

Cho điểm \({x_0}\) thuộc khoảng K và hàm số \(y = f(x)\) xác định trên K hoặc trên \(K\backslash \left\{ {{x_0}} \right\}\). Ta nói hàm số \(y = f(x)\) có giới hạn hữu hạn là số L khi \(x\) dần tới \({x_0}\) nếu với dãy số \(\left( {{x_n}} \right)\) bất kì, \({x_n} \in K\backslash \left\{ {{x_0}} \right\}\) và \({x_n} \to {x_0}\), ta có\(f({x_n}) \to L\)

Kí hiệu \(\mathop {\lim }\limits_{x \to {x_0}} f(x) = L\) hay \(f(x) \to L\), khi \({x_n} \to {x_0}\).

2. Định lí về giới hạn hữu hạn của hàm số

a, Cho \(y = f(x)\) và \(y = g(x)\) là các hàm số xác định trên \(K\backslash \left\{ {{x_0}} \right\}\)

Nếu \(\mathop {\lim }\limits_{x \to {x_0}} f(x) = L\) và \(\mathop {\lim }\limits_{x \to {x_0}} g(x) = M\), trong đó M, L là các số thực thì:

\(\mathop {\lim }\limits_{x \to {x_0}} \left[ {f(x) \pm g(x)} \right] = L \pm M\)

\(\mathop {\lim }\limits_{x \to {x_0}} \left[ {f(x).g(x)} \right] = L.M\)

\(\mathop {\lim }\limits_{x \to {x_0}} \left[ {\frac{{f(x)}}{{g(x)}}} \right] = \frac{L}{M}\left( {M \ne 0} \right)\)

b, Nếu \(f(x) \ge 0\)với mọi \(x \in \left( {a;b} \right)\backslash \left\{ {{x_0}} \right\}\) và \(\mathop {\lim }\limits_{x \to {x_0}} f(x) = L\) thì \(L \ge 0\) và \(\mathop {\lim }\limits_{x \to {x_0}} \sqrt {f(x)} = \sqrt L \).

3. Giới hạn vô cực

Cho điểm \({x_0}\)thuộc khoảng K và hàm số \(y = f(x)\) xác định trên K hoặc \(K\backslash \left\{ {{x_0}} \right\}\). Ta nói hàm số \(f(x)\) có giới hạn là \( + \infty \)(hoặc \( - \infty \) ) khi \(x\) dần tới \({x_0}\) nếu với mọi dãy số \(\left( {{x_n}} \right)\), \({x_n} \in K\backslash \left\{ {{x_0}} \right\}\) mà \(\lim {x_n} = {x_0}\), ta đều có \(\lim f\left( {{x_n}} \right) = + \infty \) (hoặc \(\lim f\left( {{x_n}} \right) = - \infty \) kí hiệu kí hiệu \(\mathop {\lim }\limits_{x \to {x_0}} f(x) = + \infty \) hoặc \(f(x) \to + \infty \) khi \(x \to {x_0}\) (tương tự kí hiệu \(\mathop {\lim }\limits_{x \to {x_0}} f(x) = - \infty \) hoặc \(f(x) \to - \infty \) khi \(x \to {x_0}\) ).

II. Giới hạn một phía

Cho hàm số \(y = f(x)\) xác định trên khoảng \(\left( {{x_0};b} \right)\).

Ta nói \(y = f(x)\) có giới hạn bên phải là số L khi \(x \to {x_0}\) nếu với dãy số \(\left( {{x_n}} \right)\) bất kì,\({x_0} < {x_n} < b\) và \({x_n} \to {x_0}\)ta có \(f({x_n}) \to L\), kí hiệu \(\mathop {\lim }\limits_{x \to {x_0}^ + } f(x) = L\).

Cho hàm số \(y = f(x)\) xác định trên khoảng \(\left( {a;{x_0}} \right)\).

Ta nói \(y = f(x)\) có giới hạn bên phải là số L khi \(x \to {x_0}\) nếu với dãy số \(\left( {{x_n}} \right)\) bất kì,\(a < {x_n} < {x_0}\) và \({x_n} \to {x_0}\)ta có \(f({x_n}) \to L\), kí hiệu \(\mathop {\lim }\limits_{x \to {x_0}^ - } f(x) = L\).

*Định lí:

\(\mathop {\lim }\limits_{x \to {x_0}} f(x) = L \Leftrightarrow \mathop {\lim }\limits_{x \to {x_0}^ - } f(x) = \mathop {\lim }\limits_{x \to {x_0}^ + } f(x) = L\)

III. Giới hạn của hàm số tại vô cực

1. Giới hạn hữu hạn của hàm số tại vô cực

Cho hàm số \(y = f(x)\) xác định trên khoảng \(\left( {a; + \infty } \right)\). Ta nói hàm số \(f(x)\) có giới hạn là số L khi \(x \to + \infty \) nếu với dãy số \(\left( {{x_n}} \right)\) bất kì \({x_n} > a\) và \({x_n} \to + \infty \)ta có \(f({x_n}) \to L\), kí hiệu \(\mathop {\lim }\limits_{x \to + \infty } f(x) = L\) hay \(f(x) \to L\) khi \(x \to + \infty \).

Cho hàm số \(y = f(x)\) xác định trên khoảng \(\left( { - \infty ;a} \right)\). Ta nói hàm số \(f(x)\) có giới hạn là số L khi \(x \to - \infty \) nếu với dãy số \(\left( {{x_n}} \right)\) bất kì \({x_n} < a\) và \({x_n} \to - \infty \)ta có \(f({x_n}) \to L\), kí hiệu \(\mathop {\lim }\limits_{x \to - \infty } f(x) = L\) hay \(f(x) \to L\) khi \(x \to - \infty \).

* Nhận xét:

  • Các quy tắc tính giới hạn hữu hạn tại một điểm cũng đúng cho giới hạn hữu hạn tại vô cực.
  • Với c là hằng số, k là một số nguyên dương ta có:

\(\mathop {\lim }\limits_{x \to \pm \infty } c = c,\)\(\mathop {\lim }\limits_{x \to \pm \infty } (\frac{c}{{{x^k}}}) = 0\)

2. Giới hạn vô cực của hàm số tại vô cực

a, Cho hàm số \(y = f(x)\) xác định trên khoảng \(\left( {a; + \infty } \right)\).

Ta nói hàm số \(f(x)\) có giới hạn là \( + \infty \) khi \(x \to + \infty \) nếu với dãy số \(\left( {{x_n}} \right),{x_n} > a\)và \(\lim {x_n} = + \infty \), ta đều có \(\lim f\left( {{x_n}} \right) = + \infty \), kí hiệu \(\mathop {\lim }\limits_{x \to + \infty } f(x) = + \infty \) hoặc \(f(x) \to + \infty \) khi \(x \to + \infty \) .

b, Cho hàm số \(y = f(x)\)xác định trên khoảng \(\left( { - \infty ;a} \right)\).

Ta nói hàm số \(f(x)\)có giới hạn là \( + \infty \) khi \(x \to - \infty \) nếu với dãy số \(\left( {{x_n}} \right),{x_n} < a\)và \(\lim {x_n} = - \infty \), ta đều có \(\lim f\left( {{x_n}} \right) = + \infty \), kí hiệu \(\mathop {\lim }\limits_{x \to - \infty } f(x) = + \infty \) hoặc \(f(x) \to + \infty \) khi \(x \to - \infty \)

Từ hai định nghĩa trên, ta có định nghĩa \(f(x) \to - \infty \) khi \(x \to + \infty \) (hay \(x \to - \infty \)) như sau:

c, \(\mathop {\lim }\limits_{x \to + \infty } f(x) = - \infty \Leftrightarrow \mathop {\lim }\limits_{x \to + \infty } \left[ { - f(x)} \right] = + \infty \)

d, \(\mathop {\lim }\limits_{x \to - \infty } f(x) = - \infty \Leftrightarrow \mathop {\lim }\limits_{x \to - \infty } \left[ { - f(x)} \right] = + \infty \)

* Chú ý:

  • \(\mathop {\lim }\limits_{x \to + \infty } {x^k} = + \infty ,k \in {\mathbb{Z}^ + }.\)
  • \(\mathop {\lim }\limits_{x \to - \infty } {x^k} = + \infty ,\) k là số nguyên dương chẵn.
  • \(\mathop {\lim }\limits_{x \to - \infty } {x^k} = - \infty ,\) k là số nguyên dương lẻ.

3. Quy tắc tìm giới hạn của tích và thương tại vô cực

*Giới hạn của tích\(\mathop {\lim }\limits_{x \to + \infty } \left[ {f(x).g(x)} \right]\)

Lý thuyết Giới hạn của hàm số - SGK Toán 11 Cùng khám phá 1

*Giới hạn của thương \(\frac{{f(x)}}{{g(x)}}\)

Lý thuyết Giới hạn của hàm số - SGK Toán 11 Cùng khám phá 2

Các quy tắc trên vẫn đúng khi thay \( + \infty \) thành \( - \infty \) (\({x_0}^ - \)hoặc \({x_0}^ + \))

Lý thuyết Giới hạn của hàm số - SGK Toán 11 Cùng khám phá 3

Chinh phục Toán 11, mở rộng cánh cửa Đại học trong tầm tay! Khám phá ngay Lý thuyết Giới hạn của hàm số - SGK Toán 11 Cùng khám phá – hành trang không thể thiếu trong chuyên mục toán 11 trên nền tảng soạn toán. Bộ bài tập toán thpt được biên soạn chuyên sâu, bám sát chặt chẽ chương trình Toán lớp 11 và định hướng các kỳ thi quan trọng, cam kết tối ưu hóa toàn diện quá trình ôn luyện. Qua đó, học sinh không chỉ làm chủ kiến thức phức tạp mà còn rèn luyện tư duy giải quyết vấn đề, sẵn sàng cho các kỳ thi và chương trình đại học, nhờ phương pháp tiếp cận trực quan, logic và hiệu quả học tập vượt trội!

Lý thuyết Giới hạn của hàm số - SGK Toán 11

Giới hạn của hàm số là một khái niệm nền tảng trong giải tích, đóng vai trò quan trọng trong việc nghiên cứu sự biến đổi của hàm số khi biến số tiến tới một giá trị nhất định. Trong chương trình Toán 11, học sinh sẽ được làm quen với khái niệm này thông qua sách giáo khoa và các bài tập thực hành.

1. Định nghĩa Giới hạn của hàm số

Giới hạn của hàm số f(x) khi x tiến tới a được ký hiệu là limx→a f(x) = L, nếu với mọi số dương ε (epsilon) nhỏ tùy ý, tồn tại một số dương δ (delta) sao cho nếu 0 < |x - a| < δ thì |f(x) - L| < ε. Nói một cách đơn giản, khi x tiến gần a, giá trị của f(x) tiến gần L.

2. Các loại Giới hạn

  • Giới hạn hữu hạn: limx→a f(x) = L (L là một số thực).
  • Giới hạn vô cùng: limx→a f(x) = +∞ hoặc limx→a f(x) = -∞.
  • Giới hạn tại vô cùng: limx→+∞ f(x) = L hoặc limx→-∞ f(x) = L.
  • Giới hạn một bên: limx→a+ f(x) (giới hạn bên phải) và limx→a- f(x) (giới hạn bên trái).

3. Các Tính chất của Giới hạn

Việc nắm vững các tính chất của giới hạn sẽ giúp bạn giải quyết các bài toán một cách nhanh chóng và hiệu quả:

  • limx→a [f(x) + g(x)] = limx→a f(x) + limx→a g(x)
  • limx→a [f(x) - g(x)] = limx→a f(x) - limx→a g(x)
  • limx→a [f(x) * g(x)] = limx→a f(x) * limx→a g(x)
  • limx→a [f(x) / g(x)] = limx→a f(x) / limx→a g(x) (với limx→a g(x) ≠ 0)

4. Các Dạng Giới hạn thường gặp

Có một số dạng giới hạn thường gặp trong chương trình Toán 11, bao gồm:

  • Giới hạn của đa thức: limx→a P(x) = P(a)
  • Giới hạn của phân thức hữu tỷ: Cần xét các trường hợp để khử dạng vô định.
  • Giới hạn sử dụng các công thức lượng giác đặc biệt: limx→0 sin(x)/x = 1, limx→0 (1 - cos(x))/x = 0

5. Bài tập minh họa

Ví dụ 1: Tính limx→2 (x2 - 4) / (x - 2)

Giải: limx→2 (x2 - 4) / (x - 2) = limx→2 (x - 2)(x + 2) / (x - 2) = limx→2 (x + 2) = 4

Ví dụ 2: Tính limx→0 sin(3x) / x

Giải: limx→0 sin(3x) / x = 3 * limx→0 sin(3x) / (3x) = 3 * 1 = 3

6. Ứng dụng của Giới hạn

Khái niệm giới hạn có nhiều ứng dụng trong toán học và các lĩnh vực khác, bao gồm:

  • Tính đạo hàm của hàm số.
  • Tính tích phân của hàm số.
  • Nghiên cứu sự hội tụ của dãy số và chuỗi số.

Hy vọng bài học này đã cung cấp cho bạn những kiến thức cơ bản và hữu ích về Lý thuyết Giới hạn của hàm số. Hãy luyện tập thêm nhiều bài tập để nắm vững kiến thức và áp dụng vào giải quyết các bài toán thực tế.

Tài liệu, đề thi và đáp án Toán 11