Bài 7.18 trang 50 SGK Toán 11 tập 2 là một bài tập quan trọng trong chương trình học Toán 11, tập trung vào việc rèn luyện kỹ năng giải bài toán liên quan đến đạo hàm và ứng dụng của đạo hàm trong việc khảo sát hàm số. Bài tập này đòi hỏi học sinh phải nắm vững kiến thức về các khái niệm đạo hàm, quy tắc tính đạo hàm và cách sử dụng đạo hàm để tìm cực trị, khoảng đơn điệu của hàm số.
Tại giaitoan.edu.vn, chúng tôi cung cấp lời giải chi tiết, dễ hiểu cho Bài 7.18 trang 50 SGK Toán 11 tập 2, giúp học sinh hiểu rõ phương pháp giải và tự tin làm bài tập.
Một vật dao động điều hòa có phương trình \(x = 4\cos \pi t\) (\(x\) tính bằng \(cm\), \(t\) tính bằng giây).
Đề bài
Một vật dao động điều hòa có phương trình \(x = 4\cos \pi t\) (\(x\) tính bằng \(cm\), \(t\) tính bằng giây).
a) Tính vận tốc của vật tại thời điểm \(t = 0,75\) giây
b) Tìm thời điểm đầu tiên vật có gia tốc lớn nhất.
Phương pháp giải - Xem chi tiết
a) Vận tốc chính là đạo hàm của \(x\)
Áp dụng công thức \(\left( {\cos u} \right)' = - u'.\sin u;\,\,\,\left( {\sin u} \right)' = u'.\cos u\)
b) Gia tốc là đạo hàm cấp hai của \(x\)
Áp dụng công thức \( - 1 \le \sin u \le 1;\,\, - 1 \le \cos u \le 1\)
Lời giải chi tiết
a) Vận tốc của vật là \(v = x' = \left( {4\cos \pi t} \right)' = - 4\sin \pi t.\left( {\pi t} \right)' = - 4\pi \sin \pi t\)
Vận tốc của vật tại thời điểm \(t = 0,75\) giây là \(v\left( {0,75} \right) = - 4\pi .\sin 0,75\pi = - 2\sqrt 2 \pi \)
b) Gia tốc của vật là \(a = x'' = \left( { - 4\pi \sin \pi t} \right)' = - 4\pi \cos \pi t.\left( {\pi t} \right)' = - 4{\pi ^2}\cos \pi t\)
Ta có \( - 1 \le \cos \pi t \le 1 \Leftrightarrow 4{\pi ^2} \ge - 4{\pi ^2}\cos \pi t \ge - 4{\pi ^2} \Leftrightarrow 4{\pi ^2} \ge a \ge - 4{\pi ^2}\)
Vậy gia tốc lớn nhất bằng \(a = 4{\pi ^2}\) khi \(\cos \pi t = - 1\)
Vậy tại thời điểm đầu tiên là \(t = 1\) thì vật có gia tốc lớn nhất
Bài 7.18 trang 50 SGK Toán 11 tập 2 yêu cầu học sinh giải một bài toán thực tế liên quan đến việc tối ưu hóa một đại lượng nào đó bằng cách sử dụng đạo hàm. Để giải bài toán này, học sinh cần thực hiện các bước sau:
Giả sử bài toán yêu cầu tìm kích thước của một hình chữ nhật có diện tích cho trước sao cho chu vi nhỏ nhất. Gọi chiều dài và chiều rộng của hình chữ nhật lần lượt là x và y. Diện tích của hình chữ nhật là xy = S (S là hằng số). Chu vi của hình chữ nhật là P = 2(x + y). Ta cần tìm x và y sao cho P nhỏ nhất.
Từ xy = S, ta có y = S/x. Thay vào công thức tính chu vi, ta được P = 2(x + S/x). Đạo hàm của P theo x là P' = 2(1 - S/x^2). Giải phương trình P' = 0, ta được x^2 = S, suy ra x = √S (vì x > 0). Khi đó, y = S/√S = √S. Vậy, hình chữ nhật có chu vi nhỏ nhất là hình vuông có cạnh bằng √S.
Đạo hàm có rất nhiều ứng dụng trong thực tế, bao gồm:
Việc nắm vững kiến thức về đạo hàm và ứng dụng của đạo hàm là rất quan trọng đối với học sinh lớp 11, không chỉ để giải các bài tập trong sách giáo khoa mà còn để chuẩn bị cho các kỳ thi quan trọng và ứng dụng vào thực tế sau này.
Tại giaitoan.edu.vn, chúng tôi luôn cập nhật những lời giải chi tiết, dễ hiểu và phương pháp giải bài tập tối ưu cho tất cả các bài tập trong SGK Toán 11 tập 2. Hãy truy cập website của chúng tôi để học toán online hiệu quả và đạt kết quả cao!
Ngoài ra, học sinh có thể tham khảo thêm các tài liệu học tập khác như:
Chúc các em học tập tốt!