Bài 2.4 trang 49 SGK Toán 11 tập 1 thuộc chương trình học Toán 11, tập trung vào việc giải các phương trình lượng giác cơ bản. Đây là một phần quan trọng giúp học sinh nắm vững kiến thức nền tảng về lượng giác và ứng dụng vào giải quyết các bài toán thực tế.
Tại giaitoan.edu.vn, chúng tôi cung cấp lời giải chi tiết, dễ hiểu cùng với các phương pháp giải bài tập hiệu quả, giúp bạn tự tin chinh phục môn Toán 11.
Xét tính tăng, giảm của các dãy số (un), biết:
Đề bài
Xét tính tăng, giảm của các dãy số (un), biết:
a) \({u_n} = - 4 - \frac{1}{n};\)
b) \({u_n} = \frac{{n - 5}}{{n + 2}};\)
c) \({u_n} = {\left( { - 1} \right)^n}n!.\)
Phương pháp giải - Xem chi tiết
So sánh \({u_{n + 1}}\) và \({u_n}\)
Nếu \({u_{n + 1}} > {u_n}\forall n\) thì là dãy số tăng.
Nếu \({u_{n + 1}} < {u_n}\forall n\) thì là dãy số giảm.
Lời giải chi tiết
a)
\(\begin{array}{l}{u_{n + 1}} - {u_n} = - 4 - \frac{1}{{n + 1}} - \left( { - 4 - \frac{1}{n}} \right) = \frac{1}{n} - \frac{1}{{n + 1}} > 0\\ \Rightarrow {u_{n + 1}} > {u_n}\forall n\end{array}\)
Vậy dãy số đã cho là dãy số tăng.
b)
\(\begin{array}{l}{u_n} = \frac{{n - 5}}{{n + 2}} = 1 - \frac{7}{{n + 2}}\\{u_{n + 1}} - {u_n} = 1 - \frac{7}{{n + 3}} - \left( {1 - \frac{7}{{n + 2}}} \right) = \frac{7}{{n + 2}} - \frac{7}{{n + 3}} = 7\left( {\frac{1}{{n + 2}} - \frac{1}{{n + 3}}} \right) > 0\\ \Rightarrow {u_{n + 1}} > {u_n}\forall n\end{array}\)
Vậy dãy số đã cho là dãy số tăng.
c)
\(\frac{{{u_{n + 1}}}}{{{u_n}}} = \frac{{{{\left( { - 1} \right)}^{n + 1}}\left( {n + 1} \right)!}}{{{{\left( { - 1} \right)}^n}n!}} = \frac{{{{\left( { - 1} \right)}^n}.\left( { - 1} \right)n!\left( {n + 1} \right)}}{{{{\left( { - 1} \right)}^n}n!}} = - \left( {n + 1} \right)<0\)
Do đó, \( - \left( {n + 1} \right) < 1\)
\( \Rightarrow {u_{n + 1}} < {u_n}\forall n\)
Vậy dãy số đã cho là dãy số giảm.
Bài 2.4 trang 49 SGK Toán 11 tập 1 yêu cầu giải các phương trình lượng giác cơ bản. Để giải quyết bài toán này, chúng ta cần nắm vững các công thức lượng giác cơ bản và các phương pháp giải phương trình lượng giác thường gặp.
Bài tập 2.4 bao gồm các phương trình lượng giác với các hàm sin, cosin, tang và cotang. Các phương trình này có thể được giải bằng cách sử dụng các công thức lượng giác, các phép biến đổi đại số và các phương pháp đặc biệt như phương pháp đặt ẩn phụ.
Ví dụ 1: Giải phương trình sin(x) = 1/2
Lời giải:
Ví dụ 2: Giải phương trình cos(x) = -√3/2
Lời giải:
Để củng cố kiến thức và kỹ năng giải phương trình lượng giác, bạn có thể luyện tập thêm các bài tập sau:
Bài 2.4 trang 49 SGK Toán 11 tập 1 là một bài tập quan trọng giúp học sinh rèn luyện kỹ năng giải phương trình lượng giác cơ bản. Bằng cách nắm vững các công thức lượng giác, các phương pháp giải phương trình và luyện tập thường xuyên, bạn có thể tự tin giải quyết các bài toán lượng giác một cách hiệu quả.