Chào mừng các em học sinh đến với chuyên mục giải bài tập Toán 11 tập 2 của giaitoan.edu.vn. Ở bài viết này, chúng tôi sẽ cung cấp lời giải chi tiết và dễ hiểu cho các bài tập trong mục 2 trang 94, 95, 96 của sách giáo khoa Toán 11 tập 2.
Mục tiêu của chúng tôi là giúp các em nắm vững kiến thức, rèn luyện kỹ năng giải toán và đạt kết quả tốt nhất trong học tập.
Khánh và Hà mỗi người ném một quả bóng vào rổ. Xét các biến cố:
Khánh và Hà mỗi người ném một quả bóng vào rổ. Xét các biến cố:
M: "Không bạn nào ném bóng trúng vào rổ";
N: "Cả hai bạn đều ném bóng trúng vào rổ";
P: "Có đúng một bạn ném bóng trúng vào rổ";
Q: "Có ít nhất một bạn ném bóng trúng vào rồ".
a) Q có là biến cổ đối của M không?
b) Xác định biến cố \(N \cap P\).
c) N có biến cố đối của P hay không?
Phương pháp giải:
Cho A là một biến cố. Khi đó biến cố “Không xảy ra A” là biến cố đối của A.
Lời giải chi tiết:
a) Q là biến cố đối của M.
b) \(N \cap P = P\): “Có đúng một bạn ném bóng trúng vào rổ”
c) N không là là biến cố đối của P.
Một hộp chứa bốn thẻ được đánh số 3, 4, 5, 6. Lấy ngẫu nhiên hai thẻ. Xét các biến cố:
A: "Tổng các số trên hai thẻ là số chẵn".
B: "Tích hai số trên hai thẻ là số chẵn";
C: "Tổng các số trên hai thẻ là số lẻ";
D: "Tích các số trên hai thẻ là số lẻ".
Hãy chỉ ra các cặp biến cố xung khắc trong các biến cố đã cho.
Phương pháp giải:
Hai biến cố xung khắc nếu chúng không đồng thời xảy ra.
Lời giải chi tiết:
A và C là hai biến cố xung khắc.
B và D là hai biến cố xung khắc.
Cho A và B là hai biến cổ xung khắc liên quan đến một phép thử với không gian mẫu là \(\Omega \). Gọi \(n\left( A \right),n\left( B \right),n\left( {A \cup B} \right)\)và \(n\left( \Omega \right)\) lần lượt là số phần tử của các biến cố A, B, \(A \cup B\) và không gian mẫu \(\Omega \).
a) Tìm \(n\left( {A \cup B} \right)\) theo \(n\left( A \right),n\left( B \right)\).
b) Viết công thức tính các xác suất P (A), P (B), \(P\left( {A \cup B} \right)\) theo \(n\left( A \right),n\left( B \right),n\left( {A \cup B} \right)\) và \(n\left( \Omega \right)\).
c) Rút ra mối liên hệ giữa \(P\left( {A \cup B} \right)\) và P (A) + P (B).
Phương pháp giải:
Công thức xác suất: \(P\left( A \right) = \frac{{n\left( A \right)}}{{n\left( \Omega \right)}}\).
Lời giải chi tiết:
a) \(n\left( {A \cup B} \right) = n\left( A \right) + n\left( B \right)\)
b) \(P\left( A \right) = \frac{{n\left( A \right)}}{{n\left( \Omega \right)}}\)
\(P\left( B \right) = \frac{{n\left( B \right)}}{{n\left( \Omega \right)}}\)
\(P\left( {A \cup B} \right) = \frac{{n\left( {A \cup B} \right)}}{{n\left( \Omega \right)}}\)
c) Ta có:
\(P\left( {A \cup B} \right) = \frac{{n\left( {A \cup B} \right)}}{{n\left( \Omega \right)}} = \frac{{n\left( A \right) + n\left( B \right)}}{{n\left( \Omega \right)}} = \frac{{n\left( A \right)}}{{n\left( \Omega \right)}} + \frac{{n\left( B \right)}}{{n\left( \Omega \right)}} = P\left( A \right) + P\left( B \right)\)
Gieo hai con xúc xắc cân đối, đồng chất, có sáu mặt và quan sát tổng số chấm xuất hiện trên hai mặt. Tính xác suất để tổng số chấm xuất hiện ở hai mặt lớn hơn 5 và nhỏ hơn 8.
Phương pháp giải:
Công thức xác suất: \(P\left( A \right) = \frac{{n\left( A \right)}}{{n\left( \Omega \right)}}\).
Lời giải chi tiết:
\(n\left( \Omega \right) = 36\)
Gọi A là biến cố “Tổng số chấm xuất hiện ở hai mặt lớn hơn 5 và nhỏ hơn 8”. Khi đó, \(n\left( A \right) = 5\)
\( \Rightarrow P\left( A \right) = \frac{{n\left( A \right)}}{{n\left( \Omega \right)}} = \frac{5}{{36}}\)
Khánh chọn ngẫu nhiên một số từ 1 đến 10. Xét các biến cố:
A : "Số được chọn chia hết cho 2";
B : "Số được chọn chia hết cho 3".
a) Tính \(P\left( A \right),P\left( B \right),P\left( {A \cup B} \right),P\left( {A \cap B} \right)\).
b) So sánh \(P\left( {A \cup B} \right) + P\left( {A \cap B} \right)\) và \(P\left( A \right) + P\left( B \right)\).
Phương pháp giải:
Công thức xác suất: \(P\left( A \right) = \frac{{n\left( A \right)}}{{n\left( \Omega \right)}}\).
Lời giải chi tiết:
a)
\(\begin{array}{l}A = \left\{ {2;4;6;8;10} \right\} \Rightarrow n\left( A \right) = 5\\P\left( A \right) = \frac{{n\left( A \right)}}{{n\left( \Omega \right)}} = \frac{5}{{10}} = \frac{1}{2}\end{array}\)
\(\begin{array}{l}B = \left\{ {3;6;9} \right\} \Rightarrow n\left( B \right) = 3\\P\left( B \right) = \frac{{n\left( B \right)}}{{n\left( \Omega \right)}} = \frac{3}{{10}}\end{array}\)
\(\begin{array}{l}A \cup B = \left\{ {2;3;4;6;8;9;10} \right\} \Rightarrow n\left( {A \cup B} \right) = 7\\P\left( {A \cup B} \right) = \frac{{n\left( {A \cup B} \right)}}{{n\left( \Omega \right)}} = \frac{7}{{10}}\end{array}\)
\(\begin{array}{l}A \cap B = \left\{ 6 \right\} \Rightarrow n\left( {A \cap B} \right) = 1\\P\left( {A \cap B} \right) = \frac{{n\left( {A \cap B} \right)}}{{n\left( \Omega \right)}} = \frac{1}{{10}}\end{array}\)
b)
\(\begin{array}{l}P\left( {A \cup B} \right) + P\left( {A \cap B} \right) = \frac{7}{{10}} + \frac{1}{{10}} = \frac{4}{5}\\P\left( A \right) + P\left( B \right) = \frac{1}{2} + \frac{3}{{10}} = \frac{4}{5}\\ \Rightarrow P\left( {A \cup B} \right) + P\left( {A \cap B} \right) = P\left( A \right) + P\left( B \right)\end{array}\)
Bảng bên dưới cho kết quả khảo sát một nhóm gồm 150 người liên quan đến mức thu nhập (hàng năm) và loại hình giải trí mà họ yêu thích.
Chọn một người ngẫu nhiên trong nhóm khảo sát. Tính xác suất của các biến cố:
a) "Người được chọn thích xem kịch ở các sân khấu";
b) "Người được chọn có thu nhập trên 200 triệu"
c) "Người được chọn có thu nhập trên 200 triệu và thích xem kịch ở các sân khấu";
d ) "Người được chọn có thu nhập trên 200 triệu hoặc thích xem kịch ở các sân khấu".
Phương pháp giải:
Nếu A và B là hai biến cố bất kì liên quan đến một phép thử thì:
\(P\left( {A \cup B} \right) = P\left( A \right) + P\left( B \right) - P\left( {A \cap B} \right)\)
Lời giải chi tiết:
\(n\left( \Omega \right) = 150\)
a) Gọi A là biến cố “Người được chọn thích xem kịch ở các sân khấu”
\(n\left( A \right) = 26\)
\( \Rightarrow P\left( A \right) = \frac{{n\left( A \right)}}{{n\left( \Omega \right)}} = \frac{{26}}{{150}} = \frac{{13}}{{75}}\)
b) Gọi B là biến cố "Người được chọn có thu nhập trên 200 triệu"
\(n\left( B \right) = 40\)
\( \Rightarrow P\left( B \right) = \frac{{n\left( B \right)}}{{n\left( \Omega \right)}} = \frac{{40}}{{150}} = \frac{4}{{15}}\)
c) Gọi C là biến cố “Người được chọn có thu nhập trên 200 triệu và thích xem kịch ở các sân khấu"
\(n\left( C \right) = 14\)
\( \Rightarrow P\left( C \right) = \frac{{n\left( C \right)}}{{n\left( \Omega \right)}} = \frac{{14}}{{150}} = \frac{7}{{75}}\)
d) Gọi D là biến cố “Người được chọn có thu nhập trên 200 triệu hoặc thích xem kịch ở các sân khấu"
\( \Rightarrow P\left( D \right) = P\left( {A \cup B} \right) = P\left( A \right) + P\left( B \right) - P\left( C \right) = \frac{{26}}{{75}}\)
Mục 2 của SGK Toán 11 tập 2 thường tập trung vào một chủ đề cụ thể trong chương trình học. Để giải quyết hiệu quả các bài tập trong mục này, học sinh cần nắm vững lý thuyết, công thức và phương pháp giải liên quan. Giaitoan.edu.vn sẽ cung cấp đầy đủ các kiến thức nền tảng và hướng dẫn chi tiết để các em tự tin giải bài tập.
Bài tập này thường yêu cầu học sinh vận dụng kiến thức về... (giả sử bài tập liên quan đến đạo hàm). Để giải bài này, ta thực hiện các bước sau:
Ví dụ: Giải bài tập 1a, ta có...
Bài tập này tập trung vào việc... (giả sử bài tập liên quan đến ứng dụng đạo hàm để khảo sát hàm số). Để giải quyết bài tập này, cần:
Chi tiết lời giải bài 2b:
Bài tập này yêu cầu học sinh... (giả sử bài tập liên quan đến bất phương trình). Phương pháp giải:
Bước | Nội dung |
---|---|
1 | Biến đổi bất phương trình về dạng quen thuộc. |
2 | Giải bất phương trình. |
3 | Kết luận nghiệm. |
Để đạt hiệu quả cao nhất khi giải bài tập, các em cần:
Ngoài SGK, các em có thể tham khảo thêm các tài liệu sau:
Hy vọng với lời giải chi tiết và hướng dẫn cụ thể trên đây, các em học sinh sẽ tự tin giải quyết các bài tập trong mục 2 trang 94, 95, 96 SGK Toán 11 tập 2. Chúc các em học tập tốt và đạt kết quả cao!