Chào mừng các em học sinh đến với chuyên mục giải bài tập Toán 11 của giaitoan.edu.vn. Trong bài viết này, chúng ta sẽ cùng nhau giải chi tiết các bài tập trong mục 1 trang 16, 17 SGK Toán 11 tập 1. Mục tiêu của chúng ta là nắm vững kiến thức, hiểu rõ phương pháp giải và áp dụng thành thạo vào các bài tập tương tự.
Giaitoan.edu.vn cam kết cung cấp lời giải chính xác, dễ hiểu, giúp các em học tập hiệu quả và đạt kết quả tốt nhất trong môn Toán.
Cho hai góc a và b, với (0 < b < a < pi ). Trên đường tròn lượng giác, xét các điểm (Pleft( {cos a;sin a} right)) và (Qleft( {cos b;sin b} right)).
Cho hai góc a và b, với \(0 < b < a < \pi \). Trên đường tròn lượng giác, xét các điểm \(P\left( {\cos a;\sin a} \right)\) và \(Q\left( {\cos b;\sin b} \right)\).
a) Dùng công thức tính khoảng cách giữa hai điểm, giải thích vì sao: \(P{Q^2} = 2 - 2\cos \cos b - 2\sin a\sin b\).
b) Dùng định lý côsin, giải thích vì sao: \(P{Q^2} = 2 - 2\cos \left( {a - b} \right)\).
c) Từ đó suy ra \(\cos \left( {a - b} \right) = \cos a\cos b + \sin a\sin b\).
Phương pháp giải:
a) \(P\left( {a;b} \right),Q\left( {c;d} \right)\)
Công thức tính khoảng cách giữa hai điểm: \(PQ = \sqrt {{{\left( {c - a} \right)}^2} + {{\left( {d - b} \right)}^2}} \)
b) Tam giác ABC
Định lý Côsin: \(\cos A = \frac{{A{B^2} + A{C^2} - B{C^2}}}{{2AB.AC}}\)
Lời giải chi tiết:
a)
\(\begin{array}{l}P{Q^2} = {\left( {\cos b - \cos a} \right)^2} + {\left( {\sin b - \sin a} \right)^2}\\ = {\cos ^2}b - 2\cos b\cos a + {\cos ^2}a + {\sin ^2}b - 2\sin b\sin a + {\sin ^2}a\\ = \left( {{{\sin }^2}a + {{\cos }^2}a} \right) + \left( {{{\sin }^2}b + {{\cos }^2}b} \right) - 2\cos a\cos b - 2\sin a\sin b\\ = 2 - 2\cos a\cos b - 2\sin a\sin b\end{array}\)
b)
\(\begin{array}{l}\cos \left( {a - b} \right) = \frac{{O{P^2} + O{Q^2} - P{Q^2}}}{{2OP.OQ}}\\ = \frac{{{1^2} + {1^2} - \left( {2 - 2\cos a\cos b - 2\sin a\sin b} \right)}}{2}\\ = \frac{{2 - 2 + 2\cos a\cos b + 2\sin a\sin b}}{2}\\ = \cos a\cos b + \sin a\sin b\end{array}\)
\( \Rightarrow P{Q^2} = 2 - 2\cos \left( {a - b} \right)\).
c) Từ phần b suy ra \(\cos \left( {a - b} \right) = \cos a\cos b + \sin a\sin b\).
Tính giá trị chính xác của:
a) \(\sin \frac{\pi }{{12}}\);
b) \(\frac{{\tan {{64}^0} - \tan {{19}^0}}}{{1 + \tan {{64}^0}\tan {{19}^0}}}\).
Phương pháp giải:
Áp dụng công thức cộng.
Lời giải chi tiết:
a)
\(\begin{array}{l}\sin \frac{\pi }{{12}} = \sin \left( {\frac{\pi }{3} - \frac{\pi }{4}} \right) = \sin \frac{\pi }{3}\cos \frac{\pi }{4} - \cos \frac{\pi }{3}\sin \frac{\pi }{4}\\ = \frac{{\sqrt 3 }}{2}.\frac{{\sqrt 2 }}{2} - \frac{1}{2}.\frac{{\sqrt 2 }}{2} = \frac{{\sqrt 6 - \sqrt 2 }}{4}\end{array}\)
b) \(\frac{{\tan {{64}^0} - \tan {{19}^0}}}{{1 + \tan {{64}^0}\tan {{19}^0}}} = \tan \left( {{{64}^0} - {{19}^0}} \right) = \tan {45^0} = 1\)
Một dòng điện xoay chiều có cường độ dòng điện i (ampe) tại thời điểm t (giây) được tính bởi công thức: \(i = 4\cos \left( {\frac{{131\pi }}{{12}}t} \right)\)
Tính giá trị chính xác của cường độ dòng điện i tại thời điểm t = 1 (giây).
Phương pháp giải:
Áp dụng công thức cộng.
Lời giải chi tiết:
Cường độ dòng điện i tại thời điểm t = 1 (giây)
\(\begin{array}{l}i\left( 1 \right) = 4\cos \left( {\frac{{131\pi }}{{12}}.1} \right) = 4\cos \left( {\frac{{131\pi }}{{12}}} \right) = 4\cos \left( {11\pi - \frac{\pi }{{12}}} \right)\\ = 4\cos \left( {\pi - \frac{\pi }{{12}}} \right) = 4\left( {\cos \pi \cos \frac{\pi }{{12}} + \sin \pi \sin \frac{\pi }{{12}}} \right)\\ = 4\left( { - 1.\frac{{\sqrt 6 - \sqrt 2 }}{4} - 0} \right) = \sqrt 2 - \sqrt 6 \end{array}\)
Mục 1 của SGK Toán 11 tập 1 thường tập trung vào việc ôn tập và mở rộng kiến thức về hàm số bậc hai. Các bài tập trong mục này thường yêu cầu học sinh vận dụng các kiến thức đã học để giải quyết các bài toán thực tế, đồng thời rèn luyện kỹ năng tư duy logic và phân tích.
Bài tập này yêu cầu học sinh xác định các hệ số a, b, c của hàm số bậc hai dựa vào phương trình của hàm số. Để giải bài tập này, học sinh cần nắm vững định nghĩa của hàm số bậc hai và biết cách nhận biết các hệ số a, b, c.
Ví dụ: Cho hàm số y = 2x2 - 3x + 1. Xác định hệ số a, b, c.
Giải: Ta có a = 2, b = -3, c = 1.
Bài tập này yêu cầu học sinh vẽ đồ thị của hàm số bậc hai. Để giải bài tập này, học sinh cần xác định được đỉnh của parabol, trục đối xứng và các điểm đặc biệt của đồ thị.
Ví dụ: Vẽ đồ thị của hàm số y = x2 - 4x + 3.
Giải:
Bài tập này yêu cầu học sinh giải phương trình bậc hai. Để giải bài tập này, học sinh cần sử dụng công thức nghiệm của phương trình bậc hai và kiểm tra điều kiện có nghiệm.
Ví dụ: Giải phương trình x2 - 5x + 6 = 0.
Giải:
Δ = b2 - 4ac = (-5)2 - 4(1)(6) = 1. Vậy phương trình có hai nghiệm phân biệt:
x1 = (-b + √Δ)/2a = (5 + 1)/2 = 3
x2 = (-b - √Δ)/2a = (5 - 1)/2 = 2
Bài tập này yêu cầu học sinh giải bất phương trình bậc hai. Để giải bài tập này, học sinh cần xác định dấu của hệ số a và sử dụng các quy tắc giải bất phương trình bậc hai.
Hy vọng với những hướng dẫn chi tiết trên, các em học sinh sẽ tự tin giải quyết các bài tập trong mục 1 trang 16, 17 SGK Toán 11 tập 1. Chúc các em học tập tốt!