Bài 7.3 trang 37 SGK Toán 11 tập 2 thuộc chương trình Giải tích, tập trung vào việc vận dụng các kiến thức về đạo hàm để giải quyết các bài toán thực tế. Bài tập này yêu cầu học sinh nắm vững các quy tắc tính đạo hàm và khả năng áp dụng chúng vào các hàm số phức tạp hơn.
Tại giaitoan.edu.vn, chúng tôi cung cấp lời giải chi tiết, dễ hiểu cho Bài 7.3 trang 37, giúp bạn hiểu rõ phương pháp giải và tự tin làm bài tập.
Cho hàm số \(f(x) = {(x - 1)^3}\) có đồ thị ( C ). Viết phương trình tiếp tuyến của ( C ) tại giao điểm của ( C ) với trục tung.
Đề bài
Cho hàm số \(f(x) = {(x - 1)^3}\) có đồ thị ( C ). Viết phương trình tiếp tuyến của ( C ) tại giao điểm của ( C ) với trục tung.
Phương pháp giải - Xem chi tiết
Giao điểm của ( C ) với Oy là tại điểm có hoành độ bằng 0
Dùng phương trình tiếp tuyến \(y = f'({x_0}).(x - {x_0}) + f({x_0})\)
Lời giải chi tiết
Giao điểm của ( C ) với Oy là điểm M (0; -1)
Ta có: \(f'(0) = \mathop {\lim }\limits_{x \to 0} \frac{{f(x) - f(0)}}{{x - 0}} = \mathop {\lim }\limits_{x \to 0} \frac{{{{(x - 1)}^3} - ( - 1)}}{x} = \mathop {\lim }\limits_{x \to 0} \frac{{{x^3} - 3{x^2} + 3x}}{x} = \mathop {\lim }\limits_{x \to 0} ({x^2} - 3x + 3) = 3\)
Phương trình tiếp tuyến đồ thị ( C ) có hệ số góc \({f'}(0) = 3\) tại điểm M (0,-1) là:
y = 3.( x- 0 ) -1= 3x – 1
Bài 7.3 trang 37 SGK Toán 11 tập 2 yêu cầu học sinh giải các bài toán liên quan đến đạo hàm của hàm số. Để giải bài tập này một cách hiệu quả, trước hết cần nắm vững các kiến thức cơ bản về đạo hàm, bao gồm:
Bài 7.3 thường bao gồm các dạng bài tập sau:
Phương pháp giải bài tập đạo hàm thường bao gồm các bước sau:
Ví dụ: Tính đạo hàm của hàm số f(x) = x3 + 2x2 - 5x + 1.
Giải:
f'(x) = (x3)' + (2x2)' - (5x)' + (1)'
f'(x) = 3x2 + 4x - 5 + 0
f'(x) = 3x2 + 4x - 5
Để nắm vững kiến thức về đạo hàm và rèn luyện kỹ năng giải bài tập, bạn có thể tham khảo thêm các bài tập sau:
Để học tốt môn Toán 11, đặc biệt là chương trình Giải tích, bạn cần:
giaitoan.edu.vn hy vọng với lời giải chi tiết và hướng dẫn cụ thể này, bạn sẽ hiểu rõ hơn về Bài 7.3 trang 37 SGK Toán 11 tập 2 và tự tin hơn trong quá trình học tập.