Bài 8.12 trang 63 SGK Toán 11 tập 2 là một bài tập quan trọng trong chương trình học Toán 11, tập trung vào việc rèn luyện kỹ năng giải bài toán liên quan đến đạo hàm và ứng dụng của đạo hàm trong việc khảo sát hàm số.
Tại giaitoan.edu.vn, chúng tôi cung cấp lời giải chi tiết, dễ hiểu, giúp học sinh nắm vững phương pháp giải và tự tin làm bài tập.
Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a, cạnh bên SA vuông góc mặt đáy và \(SA = \sqrt 2 .a\).
Đề bài
Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a, cạnh bên SA vuông góc mặt đáy và \(SA = \sqrt 2 .a\).Tính số đo góc giữa SC và (SAB)
Phương pháp giải - Xem chi tiết
Chứng minh \(BC \bot \left( {SAB} \right)\) từ đó suy ra \(SB\) là hình chiếu của \(SC\) trên \(\left( {SAB} \right)\)
Từ đó xác định góc cần tìm là góc \(\widehat {BSC}\)
Sử dụng Định lý Pi – ta – go để tính cạnh \(SB\) trong \(\Delta SAB\) vuông tại \(A\)
Sử dụng \(\tan \alpha \) để tính góc \(\widehat {BSC}\) trong tam giác \(SBC\) vuông tại \(B\)
Lời giải chi tiết
Ta có \(SA \bot BC\) vì \(SA \bot \left( {ABCD} \right)\)
Vì \(\left\{ \begin{array}{l}BC \bot SA\\BC \bot AB\,\,\left( {gt} \right)\end{array} \right. \Rightarrow BC \bot \left( {SAB} \right)\)
Suy ra \(SB\) là hình chiếu vuông góc của \(SC\) trên \(\left( {SAB} \right)\)
Vậy góc giữa \(SC\) và \(\left( {SAB} \right)\) là góc giữa \(SC\) và \(SB\)
Vậy góc đó là góc \(\widehat {BSC}\)
Xét \(\Delta SAB\) vuông tại \(A\) có \(SA = a\sqrt 2 ,AB = a \Rightarrow SB = \sqrt {S{A^2} + A{B^2}} = \sqrt {2{a^2} + {a^2}} = a\sqrt 3 \)
Xét \(\Delta SBC\) vuông tại \(B\) có \(\tan \widehat {BSC} = \frac{{BC}}{{SB}} = \frac{a}{{a\sqrt 3 }} = \frac{1}{{\sqrt 3 }} \Rightarrow \widehat {BSC} = {30^o}\)
Bài 8.12 trang 63 SGK Toán 11 tập 2 yêu cầu học sinh giải một bài toán cụ thể liên quan đến việc tìm cực trị của hàm số. Để giải bài toán này, học sinh cần nắm vững các kiến thức về đạo hàm, điều kiện cần và đủ để hàm số đạt cực trị, cũng như các bước thực hiện để tìm cực trị của hàm số.
Trước khi bắt đầu giải bài toán, học sinh cần đọc kỹ đề bài để hiểu rõ yêu cầu của bài toán. Trong bài 8.12, yêu cầu thường là tìm giá trị lớn nhất, giá trị nhỏ nhất của hàm số trên một khoảng cho trước, hoặc tìm điểm cực trị của hàm số.
Giả sử hàm số cần khảo sát là f(x) = x3 - 3x2 + 2.
x | -∞ | 0 | 2 | +∞ |
---|---|---|---|---|
f'(x) | + | - | + | |
f(x) | ↗ | ↘ | ↗ |
Từ bảng biến thiên, ta thấy:
Việc tìm cực trị của hàm số có nhiều ứng dụng trong thực tế, như:
Để củng cố kiến thức về bài toán tìm cực trị, học sinh nên làm thêm các bài tập tương tự trong SGK và các tài liệu tham khảo khác. giaitoan.edu.vn cung cấp nhiều bài tập luyện tập với các mức độ khó khác nhau, giúp học sinh rèn luyện kỹ năng giải toán một cách hiệu quả.
Việc nắm vững kiến thức về đạo hàm và ứng dụng của đạo hàm trong việc khảo sát hàm số là rất quan trọng đối với học sinh lớp 11. Hy vọng với lời giải chi tiết và hướng dẫn cụ thể của giaitoan.edu.vn, các em sẽ tự tin hơn trong việc giải các bài toán liên quan đến cực trị của hàm số.