Bài 3.19 trang 80 SGK Toán 11 tập 1 là một bài tập quan trọng trong chương trình học Toán 11, tập trung vào việc rèn luyện kỹ năng giải bài toán liên quan đến vectơ. Bài tập này yêu cầu học sinh vận dụng kiến thức về các phép toán vectơ, tích vô hướng và ứng dụng của chúng trong hình học.
Tại giaitoan.edu.vn, chúng tôi cung cấp lời giải chi tiết, dễ hiểu và phương pháp giải bài tập Bài 3.19 trang 80 SGK Toán 11 tập 1, giúp học sinh nắm vững kiến thức và tự tin giải các bài tập tương tự.
Xét tính liên tục của các hàm số sau đây tại điểm \({x_0}\):
Đề bài
Xét tính liên tục của các hàm số sau đây tại điểm \({x_0}\):
a) \(f\left( x \right) = \left\{ \begin{array}{l}\frac{{{x^2} - 3x + 2}}{{{x^2} - 1}}\,\,\,\,\,\,khi\,\,x > 1\\\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, - \frac{x}{2}\,\,\,\,\,khi\,\,x \le 1\end{array} \right.\) tại \({x_0} = 1\)
b) \(f\left( x \right) = \left\{ \begin{array}{l}\frac{{4 - {x^2}}}{{x - 2}}\,\,\,\,khi\,\,x < 2\\ - 3\,\,\,\,\,\,\,\,\,\,\,\,khi\,\,x = 2\\1 - 2x\,\,\,\,khi\,\,\,x > 2\end{array} \right.\) tại \({x_0} = 2\)
Phương pháp giải - Xem chi tiết
Hàm số liên tục tại \(x = {x_0}\) nếu \(\mathop {\lim }\limits_{x \to {x_0}^ + } f\left( x \right) = \mathop {\lim }\limits_{x \to {x_0}^ - } f\left( x \right) = f\left( {{x_0}} \right)\) hoặc \(\mathop {\lim }\limits_{x \to {x_0}} f\left( x \right) = f\left( {{x_0}} \right)\)
Khử dạng vô định \(\frac{0}{0}\) bằng cách phân tích đa thức thành nhân tử
Lời giải chi tiết
a) Tập xác định \(D = \mathbb{R}\)
+ Với \({x_0} = 1 \Rightarrow f\left( 1 \right) = - \frac{1}{2}\)
\(\mathop {\lim }\limits_{x \to {1^ + }} f\left( x \right) = \mathop {\lim }\limits_{x \to {1^ + }} \frac{{{x^2} - 3x + 2}}{{{x^2} - 1}} = \mathop {\lim }\limits_{x \to {1^ + }} \frac{{\left( {x - 1} \right)\left( {x - 2} \right)}}{{\left( {x - 1} \right)\left( {x + 1} \right)}} = \mathop {\lim }\limits_{x \to {1^ + }} \frac{{x - 2}}{{x + 1}} = \frac{{1 - 2}}{{1 + 1}} = - \frac{1}{2}\)
\(\mathop {\lim }\limits_{x \to {1^ - }} f\left( x \right) = \mathop {\lim }\limits_{x \to {1^ - }} - \frac{x}{2} = - \frac{1}{2}\)
Suy ra, \(\mathop {\lim }\limits_{x \to {1^ + }} f\left( x \right) = \mathop {\lim }\limits_{x \to {1^ - }} f\left( x \right) = f\left( 1 \right)\) cùng bằng \( - \frac{1}{2}\). Do đó hàm số liên tục tại \({x_0} = 1\)
b) Tập xác định \(D = \mathbb{R}\)
+ Với \({x_0} = 2 \Rightarrow f\left( 2 \right) = - 3\)
\(\mathop {\lim }\limits_{x \to {2^ + }} f\left( x \right) = \mathop {\lim }\limits_{x \to {2^ + }} \left( {1 - 2x} \right) = 1 - 2.2 = - 3\)
\(\mathop {\lim }\limits_{x \to {2^ - }} f\left( x \right) = \mathop {\lim }\limits_{x \to {2^ - }} \frac{{4 - {x^2}}}{{x - 2}} = \mathop {\lim }\limits_{x \to {2^ - }} \frac{{\left( {x - 2} \right)\left( {x + 2} \right)}}{{x - 2}} = \mathop {\lim }\limits_{x \to {2^ - }} - \left( {x + 2} \right) = - 4\)
Ta có \(\mathop {\lim }\limits_{x \to {2^ - }} f\left( x \right) \ne \mathop {\lim }\limits_{x \to {2^ + }} f\left( x \right)\) vì \( - 3 \ne 4\) do đó hàm số \(y = f\left( x \right)\) không liên tục tại \({x_0} = 2\)
Bài 3.19 trang 80 SGK Toán 11 tập 1 yêu cầu chúng ta giải một bài toán liên quan đến vectơ trong không gian. Để giải bài toán này một cách hiệu quả, chúng ta cần nắm vững các kiến thức cơ bản về vectơ, bao gồm:
Trước khi bắt đầu giải bài toán, chúng ta cần đọc kỹ đề bài và xác định rõ các yếu tố đã cho và yêu cầu của bài toán. Sau đó, chúng ta cần phân tích bài toán để tìm ra phương pháp giải phù hợp. Thông thường, chúng ta có thể sử dụng các phương pháp sau:
(Phần này sẽ chứa lời giải chi tiết của bài toán Bài 3.19 trang 80 SGK Toán 11 tập 1. Lời giải sẽ được trình bày một cách rõ ràng, dễ hiểu, kèm theo các giải thích chi tiết về từng bước thực hiện.)
Để giúp các em hiểu rõ hơn về cách giải bài toán, chúng ta sẽ xem xét một ví dụ minh họa:
Ví dụ: Cho hai vectơ a = (1; 2; 3) và b = (-2; 1; 0). Tính tích vô hướng của hai vectơ này.
Giải: Tích vô hướng của hai vectơ a và b được tính như sau:
a.b = (1)(-2) + (2)(1) + (3)(0) = -2 + 2 + 0 = 0
Vậy, tích vô hướng của hai vectơ a và b là 0.
Để củng cố kiến thức và kỹ năng giải bài toán, các em có thể luyện tập thêm các bài tập tương tự sau:
Bài 3.19 trang 80 SGK Toán 11 tập 1 là một bài tập quan trọng giúp các em rèn luyện kỹ năng giải bài toán về vectơ. Để giải bài toán này một cách hiệu quả, các em cần nắm vững các kiến thức cơ bản về vectơ, phân tích bài toán và lựa chọn phương pháp giải phù hợp. Hy vọng rằng, với lời giải chi tiết và phương pháp giải mà chúng tôi cung cấp, các em sẽ tự tin giải bài toán này và các bài tập tương tự.
Công thức | Mô tả |
---|---|
a.b = |a||b|cos(θ) | Tích vô hướng của hai vectơ |
|a| = √(x2 + y2 + z2) | Độ dài của vectơ |