Logo Header
  1. Môn Toán
  2. Bài 3.24 trang 81 SGK Toán 11 tập 1 - Cùng khám phá

Bài 3.24 trang 81 SGK Toán 11 tập 1 - Cùng khám phá

Bài 3.24 trang 81 SGK Toán 11 tập 1

Bài 3.24 trang 81 SGK Toán 11 tập 1 thuộc chương 3: Hàm số lượng giác. Bài tập này yêu cầu học sinh vận dụng kiến thức về hàm số lượng giác để giải quyết các bài toán thực tế.

Giaitoan.edu.vn cung cấp lời giải chi tiết, dễ hiểu, giúp học sinh nắm vững kiến thức và rèn luyện kỹ năng giải toán hiệu quả.

Dãy số \(\left( {{u_n}} \right)\) với \({u_n} = \frac{{1 + 2 + ... + n}}{{n + 2}} - \frac{n}{2},\,\forall x \in {\mathbb{N}^*}\) có giới hạn là

Đề bài

Dãy số \(\left( {{u_n}} \right)\) với \({u_n} = \frac{{1 + 2 + ... + n}}{{n + 2}} - \frac{n}{2},\,\forall x \in {\mathbb{N}^*}\) có giới hạn là

A. \( - \frac{1}{2}.\)

B. \(\frac{1}{2}.\)

C. \( - 1.\)

D. \(1.\)

Phương pháp giải - Xem chi tiếtBài 3.24 trang 81 SGK Toán 11 tập 1 - Cùng khám phá 1

Tổng có \(n\) số tự nhiên đầu tiên là \(\frac{{n\left( {n + 1} \right)}}{2}\)

Đây là giới hạn của dãy số, thực hiện bằng cách chia cả tử và mẫu cho lũy thừa cao nhất của \(n\)

Lời giải chi tiết

Ta có \(1 + 2 + ... + n = \frac{{n\left( {n + 1} \right)}}{2}\)

\( \Rightarrow {u_n} = \frac{{1 + 2 + ... + n}}{{n + 2}} - \frac{n}{2} = \frac{{n\left( {n + 1} \right)}}{{2\left( {n + 2} \right)}} - \frac{n}{2} = \frac{{ - n}}{{2\left( {n + 2} \right)}} = \frac{{ - n}}{{2n + 4}}\)

Ta có \(\lim {u_n} = \lim \frac{{ - n}}{{2n + 4}} = \lim \frac{{ - 1}}{{2 + \frac{4}{n}}} = - \frac{1}{2}\)

Đáp án A

Chinh phục Toán 11, mở rộng cánh cửa Đại học trong tầm tay! Khám phá ngay Bài 3.24 trang 81 SGK Toán 11 tập 1 - Cùng khám phá – hành trang không thể thiếu trong chuyên mục Ôn tập Toán lớp 11 trên nền tảng đề thi toán. Bộ bài tập toán trung học phổ thông được biên soạn chuyên sâu, bám sát chặt chẽ chương trình Toán lớp 11 và định hướng các kỳ thi quan trọng, cam kết tối ưu hóa toàn diện quá trình ôn luyện. Qua đó, học sinh không chỉ làm chủ kiến thức phức tạp mà còn rèn luyện tư duy giải quyết vấn đề, sẵn sàng cho các kỳ thi và chương trình đại học, nhờ phương pháp tiếp cận trực quan, logic và hiệu quả học tập vượt trội!

Bài 3.24 trang 81 SGK Toán 11 tập 1 - Giải chi tiết

Bài 3.24 SGK Toán 11 tập 1 yêu cầu chúng ta giải quyết một bài toán liên quan đến ứng dụng của hàm số lượng giác trong thực tế. Để giải bài toán này, trước hết, chúng ta cần hiểu rõ các khái niệm cơ bản về hàm số lượng giác, bao gồm:

  • Định nghĩa các hàm số lượng giác (sin, cos, tan, cot)
  • Giá trị lượng giác của các góc đặc biệt (0°, 30°, 45°, 60°, 90°)
  • Các công thức lượng giác cơ bản (công thức cộng, trừ, nhân đôi, chia đôi)
  • Biểu diễn hình học của hàm số lượng giác

Phân tích bài toán:

Trước khi đi vào giải bài toán cụ thể, chúng ta cần phân tích đề bài để xác định rõ các yếu tố quan trọng, bao gồm:

  • Thông tin đã cho trong đề bài
  • Yêu cầu của đề bài
  • Các mối quan hệ giữa các yếu tố đã cho và yêu cầu

Phương pháp giải:

Tùy thuộc vào từng dạng bài cụ thể, chúng ta có thể áp dụng các phương pháp giải khác nhau. Một số phương pháp thường được sử dụng trong việc giải các bài toán liên quan đến hàm số lượng giác bao gồm:

  • Sử dụng các công thức lượng giác để biến đổi biểu thức
  • Vẽ hình minh họa để trực quan hóa bài toán
  • Sử dụng phương pháp tọa độ để giải quyết bài toán
  • Sử dụng phương pháp đại số để giải phương trình hoặc hệ phương trình

Lời giải chi tiết:

(Nội dung lời giải chi tiết bài 3.24 trang 81 SGK Toán 11 tập 1 sẽ được trình bày tại đây. Lời giải cần bao gồm các bước giải rõ ràng, dễ hiểu, kèm theo giải thích chi tiết để học sinh có thể tự học và rèn luyện kỹ năng giải toán.)

Ví dụ minh họa:

Để giúp học sinh hiểu rõ hơn về cách giải bài toán này, chúng ta sẽ xem xét một ví dụ minh họa cụ thể. (Ví dụ minh họa sẽ được trình bày tại đây, kèm theo giải thích chi tiết.)

Bài tập tương tự:

Để rèn luyện kỹ năng giải toán, học sinh có thể tự giải các bài tập tương tự sau đây:

  1. Bài tập 1: ...
  2. Bài tập 2: ...
  3. Bài tập 3: ...

Kết luận:

Bài 3.24 trang 81 SGK Toán 11 tập 1 là một bài tập quan trọng giúp học sinh củng cố kiến thức về hàm số lượng giác và rèn luyện kỹ năng giải toán. Bằng cách nắm vững các khái niệm cơ bản, phân tích đề bài một cách cẩn thận và áp dụng các phương pháp giải phù hợp, học sinh có thể tự tin giải quyết bài toán này và các bài toán tương tự.

Lưu ý:

Trong quá trình giải bài toán, học sinh cần chú ý đến các đơn vị đo góc (độ hoặc radian) và đảm bảo rằng các phép tính được thực hiện chính xác. Ngoài ra, học sinh cũng nên kiểm tra lại kết quả để đảm bảo tính đúng đắn.

Tài liệu tham khảo:

  • Sách giáo khoa Toán 11 tập 1
  • Sách bài tập Toán 11 tập 1
  • Các trang web học toán online uy tín

Hy vọng với lời giải chi tiết và các ví dụ minh họa trên, các em học sinh sẽ hiểu rõ hơn về Bài 3.24 trang 81 SGK Toán 11 tập 1 và có thể tự tin giải quyết các bài toán tương tự. Chúc các em học tập tốt!

Tài liệu, đề thi và đáp án Toán 11