Chào mừng các em học sinh đến với lời giải chi tiết Bài 6.7 trang 13 SGK Toán 11 tập 2. Bài học này thuộc chương trình học Toán 11, tập trung vào việc vận dụng kiến thức về đạo hàm để giải quyết các bài toán thực tế.
Tại giaitoan.edu.vn, chúng tôi cung cấp lời giải bài tập Toán 11 một cách rõ ràng, dễ hiểu, giúp các em tự tin hơn trong quá trình học tập.
a) Cho \(a = {\log _{30}}3;b = {\log _{30}}5\). Hãy tính \({\log _{30}}1350\) theo a, b.
Đề bài
a) Cho \(a = {\log _{30}}3;b = {\log _{30}}5\). Hãy tính \({\log _{30}}1350\) theo a, b.
b) Cho \(c = {\log _{15}}3\). Hãy tính \({\log _{25}}15\) theo c.
Phương pháp giải - Xem chi tiết
Áp dụng:
a) \({\log _a}b.{\log _b}c = {\log _a}c\)
b) \({\log _a}b = \frac{{{{\log }_c}b}}{{{{\log }_c}a}}\); \({\log _a}\left( {\frac{b}{c}} \right) = \log {}_ab - {\log _a}c\)
Lời giải chi tiết
a)
\(\begin{array}{l}{\log _{30}}1350 = {\log _{30}}\left( {{{30.3}^2}.5} \right) = {\log _{30}}30 + {\log _{30}}{3^2} + {\log _{30}}5\\ = 1 + 2{\log _{30}}3 + {\log _{30}}5\\ = 1 + 2a + b\end{array}\)
b)
\(\begin{array}{l}{\log _{25}}15 = \frac{{{{\log }_{15}}15}}{{{{\log }_{15}}25}} = \frac{1}{{2{{\log }_{15}}5}} = \frac{1}{{2{{\log }_{15}}\left( {15:3} \right)}}\\ = \frac{1}{{2{{\log }_{15}}15 - 2{{\log }_{15}}3}} = \frac{1}{{2 - 2c}}\end{array}\)
Bài 6.7 trang 13 SGK Toán 11 tập 2 yêu cầu học sinh vận dụng kiến thức về đạo hàm của hàm số để giải quyết các bài toán liên quan đến tốc độ thay đổi của đại lượng. Để giải bài tập này một cách hiệu quả, chúng ta cần nắm vững các khái niệm cơ bản về đạo hàm, bao gồm:
Trước khi bắt tay vào giải bài tập, chúng ta cần đọc kỹ đề bài, xác định rõ các yếu tố đầu vào và đầu ra, cũng như các điều kiện ràng buộc. Sau đó, chúng ta cần lựa chọn phương pháp giải phù hợp, dựa trên kiến thức đã học và đặc điểm của bài toán.
Thông thường, để giải bài tập về đạo hàm, chúng ta cần thực hiện các bước sau:
(Nội dung lời giải chi tiết bài tập sẽ được trình bày tại đây, bao gồm các bước giải cụ thể, các phép tính và giải thích rõ ràng. Ví dụ:)
Đề bài: Cho hàm số y = x3 - 3x2 + 2. Tìm các điểm cực trị của hàm số.
Lời giải:
Kết luận: Hàm số y = x3 - 3x2 + 2 đạt cực đại tại điểm (0, 2) và đạt cực tiểu tại điểm (2, -2).
Để củng cố kiến thức về đạo hàm và rèn luyện kỹ năng giải bài tập, các em có thể tham khảo các bài tập tương tự sau:
Bài 6.7 trang 13 SGK Toán 11 tập 2 là một bài tập quan trọng giúp các em hiểu rõ hơn về ứng dụng của đạo hàm trong việc giải quyết các bài toán thực tế. Hy vọng rằng, với lời giải chi tiết và hướng dẫn cụ thể tại giaitoan.edu.vn, các em sẽ tự tin hơn trong quá trình học tập và đạt kết quả tốt trong môn Toán.
Khái niệm | Giải thích |
---|---|
Đạo hàm | Tốc độ thay đổi tức thời của hàm số |
Điểm cực trị | Điểm mà hàm số đạt giá trị lớn nhất hoặc nhỏ nhất cục bộ |