Bài tập 10.21 trang 108 SGK Toán 9 tập 2 thuộc chương trình Toán 9 Kết nối tri thức, yêu cầu học sinh vận dụng kiến thức về hàm số bậc hai để giải quyết các bài toán thực tế. Bài viết này sẽ cung cấp lời giải chi tiết, dễ hiểu, giúp các em học sinh hiểu rõ phương pháp giải và tự tin làm bài tập.
Giaitoan.edu.vn luôn đồng hành cùng các em học sinh trên con đường chinh phục môn Toán. Chúng tôi cung cấp đầy đủ các lời giải bài tập, lý thuyết và các bài toán nâng cao để giúp các em học tập hiệu quả.
Một mặt phẳng đi qua tâm hình cầu, cắt hình cầu theo một hình tròn có diện tích (9pi ;c{m^2}). Thể tích của hình cầu bằng A. (972pi ;c{m^3}). B. (36pi ;c{m^3}). C. (6pi ;c{m^3}). D. (81pi ;c{m^3}).
Đề bài
Một mặt phẳng đi qua tâm hình cầu, cắt hình cầu theo một hình tròn có diện tích \(9\pi \;c{m^2}\). Thể tích của hình cầu bằng
A. \(972\pi \;c{m^3}\).
B. \(36\pi \;c{m^3}\).
C. \(6\pi \;c{m^3}\).
D. \(81\pi \;c{m^3}\).
Video hướng dẫn giải
Phương pháp giải - Xem chi tiết
+ Tính bán kính R của hình tròn đi qua tâm.
+ Bán kính hình cầu bằng bán kính đường tròn đi qua tâm hình cầu.
+ Thể tích của hình cầu bán kính R là: \(V = \frac{4}{3}\pi {R^3}\).
Lời giải chi tiết
Vì hình tròn đi qua tâm hình cầu có diện tích \(9\pi \;c{m^2}\) nên ta có: \(\pi {R^2} = 9\pi \) nên bán kính hình tròn đi qua tâm là \(R = 3\). Vì bán kính hình cầu bằng bán kính đường tròn đi qua tâm hình cầu nên \(R = 3\).
Thể tích hình cầu là: \(V = \frac{4}{3}\pi {R^3} = \frac{4}{3}\pi {.3^3} = 36\pi \left( {c{m^3}} \right)\)
Chọn B
Bài tập 10.21 SGK Toán 9 tập 2 Kết nối tri thức là một bài toán ứng dụng thực tế về hàm số bậc hai. Để giải bài tập này, học sinh cần nắm vững các kiến thức sau:
Trước khi bắt đầu giải bài tập, chúng ta cần đọc kỹ đề bài và xác định rõ yêu cầu của bài toán. Bài tập 10.21 thường yêu cầu học sinh:
(Nội dung lời giải chi tiết bài tập 10.21 sẽ được trình bày tại đây. Lời giải cần bao gồm các bước giải rõ ràng, dễ hiểu, có giải thích cụ thể từng bước. Ví dụ:)
Ví dụ: Giả sử bài tập yêu cầu tìm chiều cao tối đa của một quả bóng được ném lên không trung theo hàm số y = -5x2 + 20x.
Bước 1: Xác định hệ số a, b, c của hàm số. Trong trường hợp này, a = -5, b = 20, c = 0.
Bước 2: Tính hoành độ đỉnh của parabol: x = -b / (2a) = -20 / (2 * -5) = 2.
Bước 3: Tính tung độ đỉnh của parabol: y = -5 * (2)2 + 20 * 2 = 20.
Kết luận: Chiều cao tối đa của quả bóng là 20 mét.
Ngoài bài tập 10.21, còn rất nhiều bài tập tương tự về hàm số bậc hai. Để giải các bài tập này, học sinh có thể áp dụng các phương pháp sau:
Để củng cố kiến thức và rèn luyện kỹ năng giải bài tập về hàm số bậc hai, học sinh nên luyện tập thêm các bài tập sau:
Bài tập 10.21 trang 108 SGK Toán 9 tập 2 - Kết nối tri thức là một bài tập quan trọng giúp học sinh hiểu rõ hơn về ứng dụng của hàm số bậc hai trong thực tế. Hy vọng với lời giải chi tiết và các phương pháp giải được trình bày trong bài viết này, các em học sinh sẽ tự tin hơn khi giải các bài tập tương tự.
Giaitoan.edu.vn luôn là địa chỉ tin cậy cho các em học sinh trong quá trình học tập môn Toán. Hãy truy cập website của chúng tôi để tìm hiểu thêm về các bài giảng, lời giải bài tập và các tài liệu học tập hữu ích khác.