Giaitoan.edu.vn xin giới thiệu lời giải chi tiết và dễ hiểu cho mục 2 trang 12, 13 sách giáo khoa Toán 9 tập 2 chương trình Kết nối tri thức. Bài viết này sẽ giúp học sinh nắm vững kiến thức, hiểu rõ phương pháp giải và tự tin làm bài tập.
Chúng tôi cung cấp đáp án đầy đủ, kèm theo các bước giải chi tiết, giúp các em học sinh có thể tự học tại nhà hoặc ôn tập kiến thức một cách hiệu quả.
Giải các phương trình sau: a) (2{x^2} + 6x = 0); b) (5{x^2} + 11x = 0).
Video hướng dẫn giải
Trả lời câu hỏi Luyện tập 3 trang 12 SGK Toán 9 Kết nối tri thức
Giải các phương trình sau:
a) \({x^2} - 25 = 0\);
b) \({\left( {x + 3} \right)^2} = 5\).
Phương pháp giải:
Các bước giải phương trình:
+ Bước 1: Đưa phương trình về dạng: \({A^2} = B\left( {B \ge 0} \right)\).
+ Bước 2: Nếu \({A^2} = B\left( {B \ge 0} \right)\) thì \(A = \sqrt B \) hoặc \(A = - \sqrt B \). Giải các phương trình đó và kết luận.
Lời giải chi tiết:
a) \({x^2} - 25 = 0\)
\({x^2} = 25\)
\(x = 5\) hoặc \(x = - 5\)
Vậy phương trình có hai nghiệm \(x = 5\); \(x = - 5\).
b) \({\left( {x + 3} \right)^2} = 5\)
\(x + 3 = \sqrt 5 \) hoặc \(x + 3 = - \sqrt 5 \)
\(x = - 3 + \sqrt 5 \) hoặc \(x = - 3 - \sqrt 5 \)
Vậy phương trình có hai nghiệm \(x = - 3 + \sqrt 5 \); \(x = - 3 - \sqrt 5 \).
Video hướng dẫn giải
Trả lời câu hỏi Luyện tập 2 trang 12 SGK Toán 9 Kết nối tri thức
Giải các phương trình sau:
a) \(2{x^2} + 6x = 0\);
b) \(5{x^2} + 11x = 0\).
Phương pháp giải:
Các bước giải phương trình:
+ Bước 1: Đưa phương trình về dạng: \(A.B = 0\).
+ Bước 2: Nếu \(A.B = 0\) thì \(A = 0\) hoặc \(B = 0\). Giải các phương trình đó và kết luận.
Lời giải chi tiết:
a) \(2{x^2} + 6x = 0\)
\(2x\left( {x + 3} \right) = 0\)
\(x = 0\) hoặc \(x = - 3\)
Vậy phương trình có hai nghiệm \(x = 0\); \(x = - 3\).
b) \(5{x^2} + 11x = 0\)
\(x\left( {5x + 11} \right) = 0\)
\(x = 0\) hoặc \(x = - \frac{{11}}{5}\)
Vậy phương trình có hai nghiệm \(x = 0\); \(x = - \frac{{11}}{5}\).
Video hướng dẫn giải
Trả lời câu hỏi Luyện tập 4 trang 13 SGK Toán 9 Kết nối tri thức
Cho phương trình \({x^2} + 6x = 1\). Hãy cộng vào cả hai vế của phương trình với cùng một số thích hợp để được một phương trình mà vế trái có thể biến đổi thành một bình phương. Từ đó, giải phương trình đã cho.
Phương pháp giải:
Các bước giải phương trình:
+ Bước 1: Cộng thêm 9 vào 2 vế để đưa phương trình về dạng: \({A^2} = B\left( {B \ge 0} \right)\).
+ Bước 2: Nếu \({A^2} = B\left( {B \ge 0} \right)\) thì \(A = \sqrt B \) hoặc \(A = - \sqrt B \). Giải các phương trình đó và kết luận.
Lời giải chi tiết:
\({x^2} + 6x = 1\)
\({x^2} + 2.x.3 + {3^2} = 1 + 9\)
\({\left( {x + 3} \right)^2} = 10\)
\(x + 3 = \sqrt {10} \) hoặc \(x + 3 = - \sqrt {10} \)
\(x = - 3 + \sqrt {10} \) \(x = - 3 - \sqrt {10} \)
Vậy phương trình có hai nghiệm \(x = - 3 + \sqrt {10} \); \(x = - 3 - \sqrt {10} \).
Video hướng dẫn giải
Trả lời câu hỏi Luyện tập 2 trang 12 SGK Toán 9 Kết nối tri thức
Giải các phương trình sau:
a) \(2{x^2} + 6x = 0\);
b) \(5{x^2} + 11x = 0\).
Phương pháp giải:
Các bước giải phương trình:
+ Bước 1: Đưa phương trình về dạng: \(A.B = 0\).
+ Bước 2: Nếu \(A.B = 0\) thì \(A = 0\) hoặc \(B = 0\). Giải các phương trình đó và kết luận.
Lời giải chi tiết:
a) \(2{x^2} + 6x = 0\)
\(2x\left( {x + 3} \right) = 0\)
\(x = 0\) hoặc \(x = - 3\)
Vậy phương trình có hai nghiệm \(x = 0\); \(x = - 3\).
b) \(5{x^2} + 11x = 0\)
\(x\left( {5x + 11} \right) = 0\)
\(x = 0\) hoặc \(x = - \frac{{11}}{5}\)
Vậy phương trình có hai nghiệm \(x = 0\); \(x = - \frac{{11}}{5}\).
Video hướng dẫn giải
Trả lời câu hỏi Luyện tập 3 trang 12 SGK Toán 9 Kết nối tri thức
Giải các phương trình sau:
a) \({x^2} - 25 = 0\);
b) \({\left( {x + 3} \right)^2} = 5\).
Phương pháp giải:
Các bước giải phương trình:
+ Bước 1: Đưa phương trình về dạng: \({A^2} = B\left( {B \ge 0} \right)\).
+ Bước 2: Nếu \({A^2} = B\left( {B \ge 0} \right)\) thì \(A = \sqrt B \) hoặc \(A = - \sqrt B \). Giải các phương trình đó và kết luận.
Lời giải chi tiết:
a) \({x^2} - 25 = 0\)
\({x^2} = 25\)
\(x = 5\) hoặc \(x = - 5\)
Vậy phương trình có hai nghiệm \(x = 5\); \(x = - 5\).
b) \({\left( {x + 3} \right)^2} = 5\)
\(x + 3 = \sqrt 5 \) hoặc \(x + 3 = - \sqrt 5 \)
\(x = - 3 + \sqrt 5 \) hoặc \(x = - 3 - \sqrt 5 \)
Vậy phương trình có hai nghiệm \(x = - 3 + \sqrt 5 \); \(x = - 3 - \sqrt 5 \).
Video hướng dẫn giải
Trả lời câu hỏi Luyện tập 4 trang 13 SGK Toán 9 Kết nối tri thức
Cho phương trình \({x^2} + 6x = 1\). Hãy cộng vào cả hai vế của phương trình với cùng một số thích hợp để được một phương trình mà vế trái có thể biến đổi thành một bình phương. Từ đó, giải phương trình đã cho.
Phương pháp giải:
Các bước giải phương trình:
+ Bước 1: Cộng thêm 9 vào 2 vế để đưa phương trình về dạng: \({A^2} = B\left( {B \ge 0} \right)\).
+ Bước 2: Nếu \({A^2} = B\left( {B \ge 0} \right)\) thì \(A = \sqrt B \) hoặc \(A = - \sqrt B \). Giải các phương trình đó và kết luận.
Lời giải chi tiết:
\({x^2} + 6x = 1\)
\({x^2} + 2.x.3 + {3^2} = 1 + 9\)
\({\left( {x + 3} \right)^2} = 10\)
\(x + 3 = \sqrt {10} \) hoặc \(x + 3 = - \sqrt {10} \)
\(x = - 3 + \sqrt {10} \) \(x = - 3 - \sqrt {10} \)
Vậy phương trình có hai nghiệm \(x = - 3 + \sqrt {10} \); \(x = - 3 - \sqrt {10} \).
Mục 2 của chương trình Toán 9 tập 2 Kết nối tri thức thường tập trung vào một chủ đề cụ thể, đòi hỏi học sinh phải nắm vững lý thuyết và áp dụng vào giải bài tập. Việc hiểu rõ bản chất của vấn đề là yếu tố then chốt để giải quyết các bài toán một cách hiệu quả. Bài viết này sẽ đi sâu vào phân tích từng bài tập trong mục 2 trang 12, 13, cung cấp lời giải chi tiết và các lưu ý quan trọng.
Trước khi đi vào giải bài tập, chúng ta cần nắm vững nội dung chính của Mục 2. Thông thường, mục này sẽ đề cập đến các kiến thức sau:
(Giả sử bài tập 1 là một bài toán về hàm số bậc nhất)
Đề bài: Tìm hệ số a của hàm số y = ax + b, biết rằng hàm số đi qua hai điểm A(1; 2) và B(-1; 0).
Lời giải:
(Giả sử bài tập 2 là một bài toán về đồ thị hàm số)
Đề bài: Vẽ đồ thị của hàm số y = 2x - 1.
Lời giải:
(Giả sử bài tập 3 là một bài toán ứng dụng hàm số)
Đề bài: Một người đi xe máy với vận tốc 40km/h. Hỏi sau 2 giờ người đó đi được quãng đường bao nhiêu km?
Lời giải:
Gọi s là quãng đường người đó đi được (km), v là vận tốc của người đó (km/h), t là thời gian người đó đi (giờ). Ta có công thức: s = v * t.
Trong bài toán này, v = 40km/h và t = 2 giờ. Vậy, s = 40 * 2 = 80 km.
Vậy, sau 2 giờ người đó đi được 80 km.
Hy vọng với lời giải chi tiết và các lưu ý trên, các em học sinh sẽ tự tin hơn khi giải các bài tập trong Mục 2 trang 12, 13 SGK Toán 9 tập 2 - Kết nối tri thức. Chúc các em học tập tốt!