Bài tập 6.18 trang 20 SGK Toán 9 tập 2 thuộc chương trình Toán 9 Kết nối tri thức, yêu cầu học sinh vận dụng kiến thức về hệ phương trình bậc nhất hai ẩn để giải quyết các bài toán thực tế. Bài tập này thường gặp trong các kỳ thi và kiểm tra, do đó việc nắm vững phương pháp giải là vô cùng quan trọng.
Giaitoan.edu.vn xin giới thiệu lời giải chi tiết, dễ hiểu bài tập 6.18 trang 20 SGK Toán 9 tập 2, giúp các em học sinh hiểu rõ bản chất của bài toán và tự tin giải các bài tập tương tự.
Cho hình chóp tam giác đều có đáy là tam giác đều cạnh a (cm) và chiều cao 10 cm. a) Tính diện tích đáy S của hình chóp theo a. b) Từ kết quả câu a, tính thể tích V của hình chóp theo a và tính giá trị của V khi a = 4 cm. c) Nếu độ dài cạnh đáy giảm đi hai lần thì thể tích hình chóp thay đổi như thế nào?
Đề bài
Cho hình chóp tam giác đều có đáy là tam giác đều cạnh a (cm) và chiều cao 10 cm.
a) Tính diện tích đáy S của hình chóp theo a.
b) Từ kết quả câu a, tính thể tích V của hình chóp theo a và tính giá trị của V khi a = 4 cm.
c) Nếu độ dài cạnh đáy giảm đi hai lần thì thể tích hình chóp thay đổi như thế nào?
Video hướng dẫn giải
Phương pháp giải - Xem chi tiết
a) Áp dụng định lí Pythagore để tính đường cao của tam giác đều.
Sử dụng công thức tính diện tích tam giác để tính diện tích đáy.
b) Áp dụng công thức tính thể tích V của hình chóp: \(V = \frac{1}{3}S.h\), S là diện tích đáy, h là chiều cao.
c) Biểu diễn độ dài cạnh đáy mới theo a, diện tích đáy mới theo a. Tính thể tích mới, so sánh với thể tích ban đầu.
Lời giải chi tiết
a) Ta có đáy hình chóp là tam giác đều cạnh a nên đường cao đồng thời là đường trung tuyến.
Suy ra đường cao là một cạnh của tam giác vuông có cạnh huyền là a và cạnh góc vuông còn lại là \(\frac{a}{2}\).
Áp dụng định lí Pythagore, ta có đường cao của đáy là:
\(\sqrt{a^2 - \left(\frac{a}{2}\right)^2} =\frac{a\sqrt 3}{2}\)
Diện tích đáy S của hình chóp là:
\(S = \frac{1}{2}.\frac{a\sqrt 3}{2}.a = \frac{a^2\sqrt 3}{4}\)
b) Khi a = 4 cm, ta có: \(S = \frac{4^2\sqrt 3}{4} = 4\sqrt 3\)
Thể tích V của hình chóp là:
\(V = \frac{1}{3}S.h = \frac{1}{3}.4\sqrt 3 . 10 = \frac{40\sqrt 3}{3} \)
c) Độ dài cạnh đáy mới là \(\frac{a}{2}\)
Chiều cao đáy mới là:
hmới \( = \sqrt {{{\left( {\frac{a}{2}} \right)}^2} - {{\left( {\frac{a}{4}} \right)}^2}} \)
\(= \sqrt {\frac{{{a^2}}}{4} - \frac{{{a^2}}}{{16}}} = \frac{{a\sqrt 3 }}{4}\left( {cm} \right)\).
Diện tích đáy mới là:
Smới \( = \frac{1}{2}.\frac{a}{2}.\frac{{a\sqrt 3 }}{4} = \frac{1}{4}.\frac{{{a^2}\sqrt 3 }}{4} = \frac{1}{4}\).Scũ.
Suy ra Vmới \( = \frac{1}{3}\).Smới.h\( = \frac{1}{3}.\frac{1}{4}\).Scũ.h\( = \frac{1}{4}\).Vcũ
Vậy nếu độ dài cạnh đáy giảm đi hai lần thì thể tích hình chóp giảm đi 4 lần.
Bài tập 6.18 SGK Toán 9 tập 2 Kết nối tri thức là một bài toán thực tế, yêu cầu học sinh xây dựng và giải hệ phương trình bậc nhất hai ẩn. Để giải bài tập này, các em cần nắm vững các kiến thức sau:
Bài toán 6.18 SGK Toán 9 tập 2 thường mô tả một tình huống thực tế, trong đó có hai đại lượng liên quan đến nhau. Nhiệm vụ của học sinh là xác định hai đại lượng đó, đặt ẩn số và xây dựng hệ phương trình bậc nhất hai ẩn để mô tả mối quan hệ giữa chúng. Sau đó, giải hệ phương trình để tìm ra giá trị của các ẩn số, từ đó giải quyết bài toán.
(Ở đây sẽ là lời giải chi tiết của bài tập 6.18, bao gồm các bước giải, giải thích rõ ràng và kết luận. Ví dụ, nếu bài toán liên quan đến việc tìm số tiền mua hàng, lời giải sẽ trình bày chi tiết cách đặt ẩn, lập phương trình và giải hệ phương trình để tìm ra số tiền cần tìm.)
Để giúp các em hiểu rõ hơn về cách giải bài tập 6.18, chúng ta cùng xét một ví dụ minh họa sau:
Ví dụ: Một người mua 3 kg táo và 2 kg cam hết 80.000 đồng. Biết rằng giá 1 kg táo hơn giá 1 kg cam 10.000 đồng. Tính giá tiền 1 kg táo và 1 kg cam.
Để củng cố kiến thức và kỹ năng giải bài tập về hệ phương trình bậc nhất hai ẩn, các em có thể luyện tập thêm các bài tập sau:
Khi giải bài tập về hệ phương trình bậc nhất hai ẩn, các em cần chú ý:
Giaitoan.edu.vn hy vọng rằng với lời giải chi tiết và hướng dẫn cụ thể này, các em học sinh sẽ tự tin giải bài tập 6.18 trang 20 SGK Toán 9 tập 2 - Kết nối tri thức và đạt kết quả tốt trong môn Toán.