Logo Header
  1. Môn Toán
  2. Giải bài tập 10.6 trang 100 SGK Toán 9 tập 2 - Kết nối tri thức

Giải bài tập 10.6 trang 100 SGK Toán 9 tập 2 - Kết nối tri thức

Giải bài tập 10.6 trang 100 SGK Toán 9 tập 2 - Kết nối tri thức

Bài tập 10.6 trang 100 SGK Toán 9 tập 2 thuộc chương trình Toán 9 Kết nối tri thức, yêu cầu học sinh vận dụng kiến thức về hàm số bậc hai để giải quyết các bài toán thực tế. Bài viết này sẽ cung cấp lời giải chi tiết, dễ hiểu, giúp các em học sinh nắm vững kiến thức và tự tin làm bài tập.

Giaitoan.edu.vn luôn đồng hành cùng các em học sinh trong quá trình học tập, cung cấp các tài liệu học tập chất lượng, đáp án chính xác và phương pháp giải bài tập hiệu quả.

Tính thể tích của hình tạo thành khi cho hình ABCD quanh AD một vòng (H.10.17).

Đề bài

Tính thể tích của hình tạo thành khi cho hình ABCD quanh AD một vòng (H.10.17).

Giải bài tập 10.6 trang 100 SGK Toán 9 tập 2 - Kết nối tri thức 1

Video hướng dẫn giải

Phương pháp giải - Xem chi tiếtGiải bài tập 10.6 trang 100 SGK Toán 9 tập 2 - Kết nối tri thức 2

Khi quay hình ABCD quanh cạnh AD một vòng thì ta được một hình gồm hai hình nón có:

+ Hình nón thứ nhất có chiều cao bằng 3cm, bán kính đáy bằng 4cm.

+ Hình nón thứ hai có chiều cao bằng 6cm, bán kính đáy bằng 8cm.

Thể tích của hình nón bán kính r và chiều cao h là: \(V = \frac{1}{3}\pi {r^2}h\).

Lời giải chi tiết

Khi quay hình ABCD quanh cạnh AD một vòng thì ta được một hình gồm hai hình nón có:

+ Hình nón thứ nhất có chiều cao bằng 3cm, bán kính đáy bằng 4cm.

+ Hình nón thứ hai có chiều cao bằng 6cm, bán kính đáy bằng 8cm.

Thể tích hình nón thứ nhất là: \({V_1} = \frac{1}{3}\pi {.4^2}.3 = 16\pi \left( {c{m^3}} \right)\).

Thể tích hình nón thứ hai là: \({V_2} = \frac{1}{3}\pi {.8^2}.6 = 128\pi \left( {c{m^3}} \right)\).

Thể tích hình cần tìm là: \(V = {V_1} + {V_2} = 16\pi + 128\pi = 144\pi \left( {c{m^3}} \right)\).

Làm chủ Toán 9, tự tin vào phòng thi! Đừng bỏ lỡ Giải bài tập 10.6 trang 100 SGK Toán 9 tập 2 - Kết nối tri thức đặc sắc thuộc chuyên mục bài tập toán 9 trên nền tảng toán. Với bộ bài tập toán trung học cơ sở được biên soạn chuyên sâu, bám sát cấu trúc đề thi và chương trình sách giáo khoa mới nhất, đây chính là công cụ đắc lực giúp các em tối ưu hóa ôn luyện, củng cố kiến thức vững chắc và thuần thục mọi dạng bài thi khó nhằn. Phương pháp học trực quan, khoa học sẽ mang lại hiệu quả vượt trội, giúp con bạn chinh phục mọi thử thách một cách dễ dàng.

Giải bài tập 10.6 trang 100 SGK Toán 9 tập 2 - Kết nối tri thức: Hướng dẫn chi tiết

Bài tập 10.6 trang 100 SGK Toán 9 tập 2 yêu cầu học sinh giải quyết một bài toán thực tế liên quan đến hàm số bậc hai. Để giải bài tập này, chúng ta cần nắm vững các kiến thức sau:

  • Định nghĩa hàm số bậc hai: Hàm số bậc hai có dạng y = ax2 + bx + c, với a ≠ 0.
  • Đồ thị hàm số bậc hai: Đồ thị hàm số bậc hai là một parabol.
  • Tính chất của parabol: Parabol có một đỉnh, một trục đối xứng và đi qua một số điểm đặc biệt.
  • Ứng dụng của hàm số bậc hai: Hàm số bậc hai được sử dụng để mô tả nhiều hiện tượng thực tế, như quỹ đạo của vật ném, hình dạng của cầu, v.v.

Phân tích bài toán 10.6 trang 100 SGK Toán 9 tập 2

Bài toán 10.6 thường mô tả một tình huống thực tế, ví dụ như việc xác định quỹ đạo của một vật được ném lên, hoặc tìm kích thước tối ưu của một hình chữ nhật để có diện tích lớn nhất. Để giải bài toán này, chúng ta cần:

  1. Xác định hàm số: Dựa vào thông tin của bài toán, xây dựng hàm số bậc hai mô tả mối quan hệ giữa các đại lượng.
  2. Tìm đỉnh của parabol: Đỉnh của parabol là điểm cao nhất hoặc thấp nhất của đồ thị hàm số. Hoành độ của đỉnh được tính bằng công thức x = -b / 2a.
  3. Xác định giá trị lớn nhất hoặc nhỏ nhất của hàm số: Giá trị lớn nhất hoặc nhỏ nhất của hàm số là tung độ của đỉnh.
  4. Kết luận: Dựa vào kết quả tìm được, trả lời câu hỏi của bài toán.

Ví dụ minh họa giải bài tập 10.6 trang 100 SGK Toán 9 tập 2

Giả sử bài toán yêu cầu tìm giá trị lớn nhất của hàm số y = -x2 + 4x - 1. Chúng ta sẽ thực hiện các bước sau:

  1. Xác định hệ số: a = -1, b = 4, c = -1.
  2. Tìm hoành độ đỉnh: x = -b / 2a = -4 / (2 * -1) = 2.
  3. Tìm tung độ đỉnh: y = -(2)2 + 4(2) - 1 = -4 + 8 - 1 = 3.
  4. Kết luận: Giá trị lớn nhất của hàm số là 3, đạt được khi x = 2.

Lưu ý khi giải bài tập 10.6 trang 100 SGK Toán 9 tập 2

Để giải bài tập 10.6 trang 100 SGK Toán 9 tập 2 một cách hiệu quả, các em học sinh cần:

  • Nắm vững kiến thức về hàm số bậc hai: Hiểu rõ định nghĩa, đồ thị và tính chất của hàm số bậc hai.
  • Đọc kỹ đề bài: Xác định rõ các thông tin đã cho và yêu cầu của bài toán.
  • Sử dụng công thức chính xác: Áp dụng đúng các công thức để tính toán.
  • Kiểm tra lại kết quả: Đảm bảo kết quả tìm được hợp lý và phù hợp với thực tế.

Bài tập luyện tập tương tự

Để củng cố kiến thức và kỹ năng giải bài tập về hàm số bậc hai, các em học sinh có thể luyện tập thêm các bài tập tương tự trong SGK Toán 9 tập 2 và các tài liệu tham khảo khác. Một số bài tập gợi ý:

  • Bài tập 10.7 trang 100 SGK Toán 9 tập 2
  • Bài tập 10.8 trang 101 SGK Toán 9 tập 2
  • Các bài tập trắc nghiệm về hàm số bậc hai

Kết luận

Bài tập 10.6 trang 100 SGK Toán 9 tập 2 là một bài tập quan trọng giúp học sinh hiểu sâu hơn về hàm số bậc hai và ứng dụng của nó trong thực tế. Hy vọng với hướng dẫn chi tiết và ví dụ minh họa trong bài viết này, các em học sinh sẽ tự tin giải quyết bài tập và đạt kết quả tốt trong môn Toán.

Tài liệu, đề thi và đáp án Toán 9