Bài tập 2.13 trang 37 SGK Toán 9 tập 1 thuộc chương Hàm số bậc nhất. Bài tập này yêu cầu học sinh vận dụng kiến thức về hàm số bậc nhất để giải quyết các bài toán thực tế. Giaitoan.edu.vn xin giới thiệu lời giải chi tiết, dễ hiểu, giúp các em học sinh hiểu rõ phương pháp giải và tự tin làm bài tập.
Chúng tôi luôn cập nhật lời giải các bài tập Toán 9 tập 1 mới nhất, đảm bảo tính chính xác và phù hợp với chương trình học.
Để loại bỏ x% một loại tảo độc khỏi một hồ nước, người ta ước tính chi phí cần bỏ ra là (Cleft( x right) = frac{{50x}}{{100 - x}}) (triệu đồng), với (0 le x < 100.) Nếu bỏ ra 450 triệu đồng, người ta có thể lọai bỏ được bao nhiêu phần trăm loại tảo độc đó?
Đề bài
Để loại bỏ x% một loại tảo độc khỏi một hồ nước, người ta ước tính chi phí cần bỏ ra là
\(C\left( x \right) = \frac{{50x}}{{100 - x}}\) (triệu đồng), với \(0 \le x < 100.\)
Nếu bỏ ra 450 triệu đồng, người ta có thể loại bỏ được bao nhiêu phần trăm loại tảo độc đó?
Video hướng dẫn giải
Phương pháp giải - Xem chi tiết
Chi phí bỏ ra là 450 triệu đồng nên ta có \(C\left( x \right) = 450\) từ đó ta có phương trình chứa ẩn ở mẫu, ta giải phương trình đối chiếu điều kiện rồi kết luận bài toán.
Lời giải chi tiết
Nếu bỏ ra 450 triệu đồng ta sẽ có \(C\left( x \right) = 450\) từ đó ta có phương trình \(\frac{{50x}}{{100 - x}} = 450\)
Quy đồng mẫu số các phân số ta được \(\frac{{50x}}{{100 - x}} = \frac{{450\left( {100 - x} \right)}}{{100 - x}}\)
Khử mẫu ta được phương trình \(50x = 450\left( {100 - x} \right)\)
\(\begin{array}{l}50x = 45000 - 450x\\50x + 450x = 45000\\500x = 45000\\x = 90\left( {t/m} \right)\end{array}\)
Vậy nếu bỏ ra 450 triệu đồng, người ta có thể loại bỏ được 90% loại tảo độc đó.
Bài tập 2.13 trang 37 SGK Toán 9 tập 1 - Kết nối tri thức là một bài toán ứng dụng thực tế về hàm số bậc nhất. Để giải bài tập này, học sinh cần nắm vững các kiến thức sau:
Nội dung bài tập 2.13:
Một người đi xe máy từ A đến B với vận tốc 40 km/h. Hỏi người đó đi hết bao lâu nếu quãng đường AB dài 120 km?
Lời giải:
Gọi t là thời gian người đó đi từ A đến B (t tính bằng giờ).
Quãng đường AB được tính bằng công thức: S = v * t, trong đó S là quãng đường, v là vận tốc, t là thời gian.
Trong bài toán này, ta có S = 120 km và v = 40 km/h. Thay vào công thức, ta được:
120 = 40 * t
Giải phương trình trên, ta được:
t = 120 / 40 = 3 (giờ)
Vậy người đó đi hết 3 giờ để đi từ A đến B.
Bài tập 2.13 là một ví dụ điển hình về ứng dụng hàm số bậc nhất vào việc giải quyết các bài toán thực tế liên quan đến chuyển động. Học sinh có thể mở rộng bài tập này bằng cách thay đổi các giá trị vận tốc và quãng đường để tính toán thời gian di chuyển trong các tình huống khác nhau.
Ngoài ra, học sinh cũng có thể tìm hiểu thêm về các ứng dụng khác của hàm số bậc nhất trong các lĩnh vực như kinh tế, tài chính, và khoa học kỹ thuật.
Để củng cố kiến thức về hàm số bậc nhất và rèn luyện kỹ năng giải bài tập, học sinh có thể tham khảo các bài tập tương tự sau:
Bài tập 2.13 trang 37 SGK Toán 9 tập 1 - Kết nối tri thức là một bài tập quan trọng giúp học sinh hiểu rõ hơn về ứng dụng của hàm số bậc nhất trong thực tế. Hy vọng với lời giải chi tiết và phân tích kỹ lưỡng trên đây, các em học sinh sẽ tự tin hơn trong việc giải các bài tập tương tự và đạt kết quả tốt trong môn Toán 9.
Giaitoan.edu.vn luôn đồng hành cùng các em học sinh trên con đường chinh phục kiến thức Toán học. Hãy truy cập website của chúng tôi để khám phá thêm nhiều tài liệu học tập hữu ích và lời giải bài tập Toán 9 tập 1 - Kết nối tri thức.
Lưu ý: Bài giải trên chỉ mang tính chất tham khảo. Học sinh nên tự mình suy nghĩ và giải bài tập để hiểu rõ hơn về kiến thức và phương pháp giải.