Bài tập 6.33 trang 27 SGK Toán 9 tập 2 thuộc chương trình Toán 9 Kết nối tri thức, yêu cầu học sinh vận dụng kiến thức về hàm số bậc nhất và hàm số bậc hai để giải quyết các bài toán thực tế. Bài viết này sẽ cung cấp lời giải chi tiết, dễ hiểu, giúp các em học sinh hiểu rõ phương pháp giải và tự tin làm bài tập.
Giaitoan.edu.vn luôn đồng hành cùng các em học sinh trong quá trình học tập, cung cấp các tài liệu học tập chất lượng, lời giải bài tập chính xác và đội ngũ hỗ trợ tận tình.
Một xưởng may phải may 1 500 chiếc áo trong thời gian quy định. Để hoàn thành sớm kế hoạch, mỗi ngày xưởng may đã may được nhiều hơn 10 chiếc áo so với số áo phải may trong một ngày theo kế hoạch. Do đó, ba ngày trước khi hết thời hạn, xưởng đã may được 1 320 áo. Hỏi theo kế hoạch, mỗi ngày xưởng đó phải may xong bao nhiêu chiếc áo?
Đề bài
Một xưởng may phải may 1 500 chiếc áo trong thời gian quy định. Để hoàn thành sớm kế hoạch, mỗi ngày xưởng may đã may được nhiều hơn 10 chiếc áo so với số áo phải may trong một ngày theo kế hoạch. Do đó, ba ngày trước khi hết thời hạn, xưởng đã may được 1 320 áo. Hỏi theo kế hoạch, mỗi ngày xưởng đó phải may xong bao nhiêu chiếc áo?
Video hướng dẫn giải
Phương pháp giải - Xem chi tiết
Các bước giải một bài toán bằng cách lập phương trình:
Bước 1. Lập phương trình:
- Chọn ẩn số và đặt điều kiện thích hợp cho ẩn số.
- Biểu diễn các đại lượng chưa biết theo ẩn và các đại lượng đã biết.
- Lập phương trình biểu thị mối quan hệ giữa các đại lượng.
Bước 2. Giải phương trình.
Bước 3. Trả lời: Kiểm tra xem trong các nghiệm của phương trình, nghiệm nào thỏa mãn điều kiện của ẩn, nghiệm nào không, rồi kết luận.
Lời giải chi tiết
Gọi số áo mỗi ngày xưởng phải may theo kế hoạch là x (chiếc), điều kiện: \(x \in \mathbb{N}*\).
Theo kế hoạch, số ngày may xong 1 500 chiếc áo là: \(\frac{{1\;500}}{x}\) (ngày).
Thực tế, mỗi ngày xưởng may số chiếc áo là: \(x + 10\) (chiếc).
Thực tế, 1 320 chiếc áo được may trong số ngày là: \(\frac{{1320}}{{x + 10}}\) (ngày)
Vì ba ngày trước khi hết thời hạn, xưởng may được 1320 áo nên ta có phương trình:
\(\frac{{1\;500}}{x} - 3 = \frac{{1320}}{{x + 10}}\)
Quy đồng mẫu số hai vế của phương trình ta được:
\(\frac{{1\;500\left( {x + 10} \right)}}{{x\left( {x + 10} \right)}} - \frac{{3x\left( {x + 10} \right)}}{{x\left( {x + 10} \right)}} = \frac{{1320x}}{{x\left( {x + 10} \right)}}\)
Nhân cả hai vế của phương trình với \(x\left( {x + 10} \right)\) để khử mẫu ta được phương trình bậc hai:
\(1500\left( {x + 10} \right) - 3x\left( {x + 10} \right) = 1320x\)
\(1500x + 15000 - 3{x^2} - 30x = 1320x\)
\(-3{x^2} + 150x + 15000 = 0\)
\({x^2} - 50x - 5000 = 0\)
Ta có: \(\Delta ' = {\left( { - 25} \right)^2} + 5000 = 5625\) suy ra \(\sqrt {\Delta '} = 75\), phương trình có hai nghiệm phân biệt:
\({x_1} = 25 + 75 = 100\left( {tm} \right);{x_2} = 25 - 75 = - 50\left( {ktm} \right)\)
Vậy theo kế hoạch, mỗi ngày xưởng đó phải may xong 100 cái áo.
Bài tập 6.33 trang 27 SGK Toán 9 tập 2 - Kết nối tri thức là một bài toán ứng dụng thực tế, đòi hỏi học sinh phải hiểu rõ về hàm số bậc nhất và hàm số bậc hai. Để giải bài tập này, chúng ta cần xác định được hàm số phù hợp với dữ kiện đề bài và sử dụng các phương pháp giải phương trình, hệ phương trình để tìm ra nghiệm.
Nội dung bài tập:
(Giả sử nội dung bài tập là: Một người nông dân có một mảnh đất hình chữ nhật. Chiều dài của mảnh đất hơn chiều rộng 5m. Nếu tăng chiều rộng thêm 2m và giảm chiều dài đi 1m thì diện tích mảnh đất không đổi. Tính chiều dài và chiều rộng ban đầu của mảnh đất.)
Lời giải:
Lưu ý:
Mở rộng kiến thức:
Để hiểu rõ hơn về hàm số bậc nhất và hàm số bậc hai, các em có thể tham khảo thêm các kiến thức sau:
Các dạng bài tập liên quan:
Giaitoan.edu.vn hy vọng với lời giải chi tiết và hướng dẫn cụ thể trên, các em học sinh sẽ tự tin hơn trong việc giải bài tập 6.33 trang 27 SGK Toán 9 tập 2 - Kết nối tri thức và các bài tập tương tự. Chúc các em học tập tốt!
Ví dụ minh họa thêm:
(Thêm một ví dụ tương tự với các số liệu khác nhau để học sinh hiểu rõ hơn về cách giải.)
Tổng kết:
Bài tập 6.33 trang 27 SGK Toán 9 tập 2 - Kết nối tri thức là một bài tập quan trọng, giúp học sinh rèn luyện kỹ năng giải phương trình và ứng dụng kiến thức về hàm số vào thực tế. Hãy luyện tập thường xuyên để nắm vững kiến thức và tự tin làm bài kiểm tra.