Bài tập 2.27 trang 42 SGK Toán 9 tập 1 thuộc chương trình Kết nối tri thức là một bài toán quan trọng giúp học sinh rèn luyện kỹ năng về hàm số bậc nhất. Bài toán này thường yêu cầu học sinh xác định hệ số góc, vẽ đồ thị hàm số và ứng dụng vào giải quyết các bài toán thực tế.
Giaitoan.edu.vn xin giới thiệu lời giải chi tiết, dễ hiểu bài tập 2.27 trang 42 SGK Toán 9 tập 1, giúp các em học sinh hiểu rõ phương pháp giải và tự tin làm bài tập.
Giải các phương trình sau: a) (frac{x}{{x - 5}} - frac{2}{{x + 5}} = frac{{{x^2}}}{{{x^2} - 25}};) b) (frac{1}{{x - 1}} - frac{x}{{{x^2} - x + 1}} = frac{3}{{{x^3} + 1}}.)
Đề bài
Giải các phương trình sau:
a) \(\frac{x}{{x - 5}} - \frac{2}{{x + 5}} = \frac{{{x^2}}}{{{x^2} - 25}};\)
b) \(\frac{1}{{x - 1}} - \frac{x}{{{x^2} - x + 1}} = \frac{3}{{{x^3} + 1}}.\)
Video hướng dẫn giải
Phương pháp giải - Xem chi tiết
Giải phương trình chứa ẩn ở mẫu:
- Tìm ĐKXĐ
- Quy đồng mẫu thức các phân thức và khử mẫu
- Giải phương trình vừa nhận được và kết luận (đối chiếu điều kiện).
Lời giải chi tiết
a) \(\frac{x}{{x - 5}} - \frac{2}{{x + 5}} = \frac{{{x^2}}}{{{x^2} - 25}};\)
ĐKXĐ: \(x \ne \pm 5\)
Quy đồng mẫu thức ta được \(\frac{{x\left( {x + 5} \right)}}{{\left( {x - 5} \right)\left( {x + 5} \right)}} - \frac{{2\left( {x - 5} \right)}}{{\left( {x + 5} \right)\left( {x - 5} \right)}} = \frac{{{x^2}}}{{\left( {x - 5} \right)\left( {x + 5} \right)}}\)
Khử mẫu ta được \(x\left( {x + 5} \right) - 2\left( {x - 5} \right) = {x^2}\) hay \({x^2} + 5x - 2x + 10 - {x^2} = 0\)
Suy ra \(3x + 10 = 0\) nên \(x = \frac{{ - 10}}{3}\) (TM)
Vậy nghiệm của phương trình là \(x = \frac{{ - 10}}{3}.\)
b) \(\frac{1}{{x + 1}} - \frac{x}{{{x^2} - x + 1}} = \frac{3}{{{x^3} + 1}}.\)
ĐKXĐ: \(x \ne - 1.\)
Quy đồng mẫu thức ta được \(\frac{{1.\left( {{x^2} - x + 1} \right)}}{{\left( {x + 1} \right)\left( {{x^2} - x + 1} \right)}} - \frac{{x\left( {x + 1} \right)}}{{\left( {{x^2} - x + 1} \right)\left( {x + 1} \right)}} = \frac{3}{{\left( {x + 1} \right)\left( {{x^2} - x + 1} \right)}}\)
Khử mẫu ta được \({x^2} - x + 1 - x\left( {x + 1} \right) = 3\) hay \({x^2} - x + 1 - {x^2} - x - 3 = 0\) suy ra \( - 2x - 2 = 0\) nên \(x = - 1\left( {ktm} \right)\)
Vậy phương trình vô nghiệm.
Bài tập 2.27 trang 42 SGK Toán 9 tập 1 - Kết nối tri thức yêu cầu học sinh giải một bài toán liên quan đến hàm số bậc nhất. Để giải bài tập này một cách hiệu quả, chúng ta cần nắm vững các kiến thức cơ bản về hàm số bậc nhất, bao gồm:
Trước khi đi vào giải bài tập cụ thể, chúng ta cần đọc kỹ đề bài và xác định rõ yêu cầu của bài toán. Thông thường, bài toán 2.27 sẽ yêu cầu:
(Ở đây sẽ là lời giải chi tiết của bài tập 2.27, bao gồm các bước giải, giải thích rõ ràng và các ví dụ minh họa. Lời giải này sẽ được trình bày chi tiết, dễ hiểu, phù hợp với trình độ của học sinh lớp 9.)
Để giúp các em hiểu rõ hơn về cách giải bài tập 2.27, chúng ta sẽ xem xét một ví dụ minh họa:
Ví dụ: Cho hàm số y = 2x - 1. Hãy vẽ đồ thị hàm số và tìm tọa độ giao điểm của đồ thị với đường thẳng y = x + 2.
Giải:
Thay y = x + 2 vào phương trình y = 2x - 1, ta được: x + 2 = 2x - 1 => x = 3. Thay x = 3 vào phương trình y = x + 2, ta được: y = 5. Vậy tọa độ giao điểm là (3; 5).
Để củng cố kiến thức và kỹ năng giải bài tập về hàm số bậc nhất, các em có thể tự giải thêm các bài tập sau:
Bài tập 2.27 trang 42 SGK Toán 9 tập 1 - Kết nối tri thức là một bài toán quan trọng giúp học sinh hiểu rõ hơn về hàm số bậc nhất và ứng dụng của nó. Hy vọng với lời giải chi tiết và ví dụ minh họa trên, các em học sinh sẽ tự tin hơn khi giải các bài tập tương tự.