Giaitoan.edu.vn xin giới thiệu lời giải chi tiết mục 2 trang 13, 14 sách giáo khoa Toán 9 tập 1 chương trình Kết nối tri thức. Bài viết này sẽ cung cấp đáp án đầy đủ, dễ hiểu, cùng với phương pháp giải bài tập một cách khoa học.
Chúng tôi hiểu rằng việc tự học Toán 9 có thể gặp nhiều khó khăn. Vì vậy, đội ngũ giáo viên giàu kinh nghiệm của giaitoan.edu.vn đã biên soạn bài giải này với mục tiêu giúp các em học sinh nắm vững kiến thức và tự tin giải quyết các bài tập tương tự.
Cho hệ phương trình (left( {II} right)left{ begin{array}{l}2x + 2y = 3x - 2y = 6end{array} right..) Ta thấy hệ số của y trong hai phương trình là hai số đối của nhau (tổng của chúng bằng 0) . Từ đặc điểm đó, hãy giải hệ phương trình đã cho theo hướng dẫn sau: 1. Cộng từng vế của hai phương trình trong hệ để được phương trình một ẩn x. Giải phương trình này để tìm x. 2. Sử dụng giá trị x tìm được, thay vào một trong hai phương trình của hệ để tìm giá trị của y rồi viết nghiệm của hệ
Video hướng dẫn giải
Trả lời câu hỏi Hoạt động 2 trang 13 SGK Toán 9 Kết nối tri thức
Cho hệ phương trình \(\left( {II} \right)\left\{ \begin{array}{l}2x + 2y = 3\\x - 2y = 6\end{array} \right..\) Ta thấy hệ số của y trong hai phương trình là hai số đối của nhau (tổng của chúng bằng 0) . Từ đặc điểm đó, hãy giải hệ phương trình đã cho theo hướng dẫn sau:
1. Cộng từng vế của hai phương trình trong hệ để được phương trình một ẩn x. Giải phương trình này để tìm x.
2. Sử dụng giá trị x tìm được, thay vào một trong hai phương trình của hệ để tìm giá trị của y rồi viết nghiệm của hệ phương trình đã cho.
Phương pháp giải:
a) Để cộng từng vế của hai phương trình trong hệ, ta cần lấy vế trái của phương trình đầu cộng với vế trái của phương trình thứ hai bằng vế phải của phương trình đầu cộng với vế phải của phương trình thứ hai, tức là: \(\left( {2x + 2y} \right) + \left( {x - 2y} \right) = 6 + 3\) sau đó ta giải được \(x = 3.\)
b) Thay \(x = 3\) vào phương trình thứ 2, ta được \(3 - 2y = 6\), từ đó ta giải được y và kết luận nghiệm.
Lời giải chi tiết:
1. Cộng từng vế của hai phương trình trong hệ ta được:
\(\begin{array}{l}\left( {2x + 2y} \right) + \left( {x - 2y} \right) = 6 + 3\\3x = 9\\x = 3\end{array}\)
2. Với \(x = 3\) thay vào phương trình thứ hai ta có: \(3 - 2y = 6\) nên \(y = \frac{{ - 3}}{2}.\)
Vậy \(\left( {3;\frac{{ - 3}}{2}} \right)\) là nghiệm của hệ phương trình.
Video hướng dẫn giải
Trả lời câu hỏi Luyện tập 5 trang 14 SGK Toán 9 Kết nối tri thức
Giải hệ phương trình \(\left\{ \begin{array}{l}4x + 3y = 6\\ - 5x + 2y = 4\end{array} \right.\) bằng phương pháp cộng đại số.
Phương pháp giải:
Nếu hệ số của cùng 1 ẩn ở trong hai phương trình bằng nhau hoặc đối nhau thì ta làm như sau:
- Cộng hoặc trừ từng vế của hai phương trình trong hệ để được phương trình chứa một ẩn.
- Giải phương trình một ẩn vừa nhận được, từ đó suy ra nghiệm của hệ phương trình.
Trong trường hợp hệ phương trình đã cho không có hai hệ số của cùng 1 ẩn bằng nhau hoặc đối nhau thì ta có thể nhân 2 vế của mỗi phương trình với một số thích hợp khác 0.
Lời giải chi tiết:
Nhân cả hai vế của phương trình thứ nhất với số 5, nhân cả hai vế của phương trình thứ hai với số 4 ta được:
\(\left\{ \begin{array}{l}20x + 15y = 30\\ - 20x + 8y = 16\end{array} \right.\)
Cộng từng vế của hai phương trình ta có \(\left( {20x + 15y} \right) + \left( {- 20x + 8y} \right) = 30 + 16\) nên \(23y = 46\) suy ra \(y = 2.\)
Thế \(y = 2\) vào phương trình thứ nhất ta được \(4x + 3.2 = 6\) nên \(4x = 0\) suy ra \(x = 0.\)
Vậy nghiệm của hệ phương trình là \(\left( { 0;2 }\right)\).
Video hướng dẫn giải
Trả lời câu hỏi Luyện tập 6 trang 14 SGK Toán 9 Kết nối tri thức
Bằng phương pháp cộng đại số, giải hệ phương trình \(\left\{ \begin{array}{l} - 0.5x + 0.5y = 1\\ - 2x + 2y = 8.\end{array} \right.\)
Phương pháp giải:
Nếu hệ số của cùng 1 ẩn ở trong hai phương trình bằng nhau hoặc đối nhau thì ta làm như sau:
- Cộng hoặc trừ từng vế của hai phương trình trong hệ để được phương trình chứa một ẩn.
- Giải phương trình một ẩn vừa nhận được, từ đó suy ra nghiệm của hệ phương trình.
Trong trường hợp hệ phương trình đã cho không có hai hệ số của cùng 1 ẩn bằng nhau hoặc đối nhau thì ta có thể nhân 2 vế của mỗi phương trình với một số thích hợp khác 0.
Lời giải chi tiết:
Nhân cả hai vế của phương trình thứ nhất với 4, ta được \( - 2x + 2y = 4\) nên hệ phương trình đã cho trở thành \(\left\{ \begin{array}{l} - 2x + 2y = 4\\ - 2x + 2y = 8\end{array} \right.\)
Trừ từng vế của hai phương trình ta được \(\left( { - 2x + 2y} \right) - \left( { - 2x + 2y} \right) = 4 - 8\) suy ra \(0x + 0y = - 4\) (vô lí) .
Phương trình này không có giá trị nào của x và y thỏa mãn nên hệ phương trình đã cho vô nghiệm.
Video hướng dẫn giải
Trả lời câu hỏi Hoạt động 2 trang 13 SGK Toán 9 Kết nối tri thức
Cho hệ phương trình \(\left( {II} \right)\left\{ \begin{array}{l}2x + 2y = 3\\x - 2y = 6\end{array} \right..\) Ta thấy hệ số của y trong hai phương trình là hai số đối của nhau (tổng của chúng bằng 0) . Từ đặc điểm đó, hãy giải hệ phương trình đã cho theo hướng dẫn sau:
1. Cộng từng vế của hai phương trình trong hệ để được phương trình một ẩn x. Giải phương trình này để tìm x.
2. Sử dụng giá trị x tìm được, thay vào một trong hai phương trình của hệ để tìm giá trị của y rồi viết nghiệm của hệ phương trình đã cho.
Phương pháp giải:
a) Để cộng từng vế của hai phương trình trong hệ, ta cần lấy vế trái của phương trình đầu cộng với vế trái của phương trình thứ hai bằng vế phải của phương trình đầu cộng với vế phải của phương trình thứ hai, tức là: \(\left( {2x + 2y} \right) + \left( {x - 2y} \right) = 6 + 3\) sau đó ta giải được \(x = 3.\)
b) Thay \(x = 3\) vào phương trình thứ 2, ta được \(3 - 2y = 6\), từ đó ta giải được y và kết luận nghiệm.
Lời giải chi tiết:
1. Cộng từng vế của hai phương trình trong hệ ta được:
\(\begin{array}{l}\left( {2x + 2y} \right) + \left( {x - 2y} \right) = 6 + 3\\3x = 9\\x = 3\end{array}\)
2. Với \(x = 3\) thay vào phương trình thứ hai ta có: \(3 - 2y = 6\) nên \(y = \frac{{ - 3}}{2}.\)
Vậy \(\left( {3;\frac{{ - 3}}{2}} \right)\) là nghiệm của hệ phương trình.
Video hướng dẫn giải
Trả lời câu hỏi Luyện tập 4 trang 14 SGK Toán 9 Kết nối tri thức
Giải các hệ phương trình sau bằng phương pháp cộng đại số:
a) \(\left\{ \begin{array}{l} - 4x + 3y = 0\\4x - 5y = - 8;\end{array} \right.\)
b) \(\left\{ \begin{array}{l}4x + 3y = 0\\x + 3y = 9.\end{array} \right.\)
Phương pháp giải:
Nếu hệ số của cùng 1 ẩn ở trong hai phương trình bằng nhau hoặc đối nhau thì ta làm như sau:
- Cộng hoặc trừ từng vế của hai phương trình trong hệ để được phương trình chứa một ẩn.
- Giải phương trình một ẩn cừa nhận được, từ đó suy ra nghiệm của hệ phương trình.
Lời giải chi tiết:
a) Cộng từng vế của hai phương trình ta được \( - 2y = - 8\) suy ra \(y = 4.\)
Thế \(y = 4\) vào phương trình đầu ta được \( - 4x + 3.4 = 0\) nên \( - 4x = - 12\) suy ra \(x = 3.\)
Vậy\(\left( {3;4} \right)\) là nghiệm của hệ phương trình.
b) Trừ từng vế của hai phương trình ta được \(\left( {4x + 3y} \right) - \left( {x + 3y} \right) = 0 - 9\) nên \(3x = - 9\) suy ra \(x = - 3.\)
Thế \(x = - 3\) vào phương trình số hai ta được \( - 3 + 3.y = 9\) nên \(3y = 12\) suy ra \(y = 4.\)
Vậy \(\left( { - 3;4} \right)\) là nghiệm của hệ phương trình.
Video hướng dẫn giải
Trả lời câu hỏi Luyện tập 5 trang 14 SGK Toán 9 Kết nối tri thức
Giải hệ phương trình \(\left\{ \begin{array}{l}4x + 3y = 6\\ - 5x + 2y = 4\end{array} \right.\) bằng phương pháp cộng đại số.
Phương pháp giải:
Nếu hệ số của cùng 1 ẩn ở trong hai phương trình bằng nhau hoặc đối nhau thì ta làm như sau:
- Cộng hoặc trừ từng vế của hai phương trình trong hệ để được phương trình chứa một ẩn.
- Giải phương trình một ẩn vừa nhận được, từ đó suy ra nghiệm của hệ phương trình.
Trong trường hợp hệ phương trình đã cho không có hai hệ số của cùng 1 ẩn bằng nhau hoặc đối nhau thì ta có thể nhân 2 vế của mỗi phương trình với một số thích hợp khác 0.
Lời giải chi tiết:
Nhân cả hai vế của phương trình thứ nhất với số 5, nhân cả hai vế của phương trình thứ hai với số 4 ta được:
\(\left\{ \begin{array}{l}20x + 15y = 30\\ - 20x + 8y = 16\end{array} \right.\)
Cộng từng vế của hai phương trình ta có \(\left( {20x + 15y} \right) + \left( {- 20x + 8y} \right) = 30 + 16\) nên \(23y = 46\) suy ra \(y = 2.\)
Thế \(y = 2\) vào phương trình thứ nhất ta được \(4x + 3.2 = 6\) nên \(4x = 0\) suy ra \(x = 0.\)
Vậy nghiệm của hệ phương trình là \(\left( { 0;2 }\right)\).
Video hướng dẫn giải
Trả lời câu hỏi Luyện tập 6 trang 14 SGK Toán 9 Kết nối tri thức
Bằng phương pháp cộng đại số, giải hệ phương trình \(\left\{ \begin{array}{l} - 0.5x + 0.5y = 1\\ - 2x + 2y = 8.\end{array} \right.\)
Phương pháp giải:
Nếu hệ số của cùng 1 ẩn ở trong hai phương trình bằng nhau hoặc đối nhau thì ta làm như sau:
- Cộng hoặc trừ từng vế của hai phương trình trong hệ để được phương trình chứa một ẩn.
- Giải phương trình một ẩn vừa nhận được, từ đó suy ra nghiệm của hệ phương trình.
Trong trường hợp hệ phương trình đã cho không có hai hệ số của cùng 1 ẩn bằng nhau hoặc đối nhau thì ta có thể nhân 2 vế của mỗi phương trình với một số thích hợp khác 0.
Lời giải chi tiết:
Nhân cả hai vế của phương trình thứ nhất với 4, ta được \( - 2x + 2y = 4\) nên hệ phương trình đã cho trở thành \(\left\{ \begin{array}{l} - 2x + 2y = 4\\ - 2x + 2y = 8\end{array} \right.\)
Trừ từng vế của hai phương trình ta được \(\left( { - 2x + 2y} \right) - \left( { - 2x + 2y} \right) = 4 - 8\) suy ra \(0x + 0y = - 4\) (vô lí) .
Phương trình này không có giá trị nào của x và y thỏa mãn nên hệ phương trình đã cho vô nghiệm.
Video hướng dẫn giải
Trả lời câu hỏi Luyện tập 4 trang 14 SGK Toán 9 Kết nối tri thức
Giải các hệ phương trình sau bằng phương pháp cộng đại số:
a) \(\left\{ \begin{array}{l} - 4x + 3y = 0\\4x - 5y = - 8;\end{array} \right.\)
b) \(\left\{ \begin{array}{l}4x + 3y = 0\\x + 3y = 9.\end{array} \right.\)
Phương pháp giải:
Nếu hệ số của cùng 1 ẩn ở trong hai phương trình bằng nhau hoặc đối nhau thì ta làm như sau:
- Cộng hoặc trừ từng vế của hai phương trình trong hệ để được phương trình chứa một ẩn.
- Giải phương trình một ẩn cừa nhận được, từ đó suy ra nghiệm của hệ phương trình.
Lời giải chi tiết:
a) Cộng từng vế của hai phương trình ta được \( - 2y = - 8\) suy ra \(y = 4.\)
Thế \(y = 4\) vào phương trình đầu ta được \( - 4x + 3.4 = 0\) nên \( - 4x = - 12\) suy ra \(x = 3.\)
Vậy\(\left( {3;4} \right)\) là nghiệm của hệ phương trình.
b) Trừ từng vế của hai phương trình ta được \(\left( {4x + 3y} \right) - \left( {x + 3y} \right) = 0 - 9\) nên \(3x = - 9\) suy ra \(x = - 3.\)
Thế \(x = - 3\) vào phương trình số hai ta được \( - 3 + 3.y = 9\) nên \(3y = 12\) suy ra \(y = 4.\)
Vậy \(\left( { - 3;4} \right)\) là nghiệm của hệ phương trình.
Mục 2 của chương trình Toán 9 tập 1 Kết nối tri thức thường tập trung vào các kiến thức cơ bản về hàm số bậc nhất. Các bài tập trong mục này thường yêu cầu học sinh vận dụng các kiến thức về định nghĩa hàm số, cách xác định hàm số, và các tính chất của hàm số bậc nhất để giải quyết các bài toán cụ thể.
Cho hàm số y = 2x - 3. Tính giá trị của y khi x = 1; x = -2; x = 0.
Giải:
Vẽ đồ thị của hàm số y = -x + 2.
Giải:
Để vẽ đồ thị của hàm số y = -x + 2, ta cần xác định hai điểm thuộc đồ thị. Ví dụ, ta có thể chọn x = 0 và x = 2.
Nối hai điểm A và B, ta được đồ thị của hàm số y = -x + 2.
Ngoài các bài tập tính giá trị của hàm số và vẽ đồ thị, Mục 2 còn có các dạng bài tập khác như:
Để học tốt Mục 2, các em học sinh cần:
Giaitoan.edu.vn hy vọng rằng bài viết này sẽ giúp các em học sinh hiểu rõ hơn về Mục 2 trang 13, 14 SGK Toán 9 tập 1 - Kết nối tri thức và tự tin giải quyết các bài tập liên quan.