Bài tập 9.40 trang 92 SGK Toán 9 tập 2 thuộc chương trình Kết nối tri thức là một bài toán quan trọng giúp học sinh rèn luyện kỹ năng về hàm số bậc hai. Bài toán này thường yêu cầu học sinh xác định hệ số, tìm đỉnh parabol, vẽ đồ thị và ứng dụng vào giải quyết các bài toán thực tế.
Giaitoan.edu.vn xin giới thiệu lời giải chi tiết, dễ hiểu bài tập 9.40 này, giúp các em học sinh nắm vững kiến thức và tự tin hơn trong quá trình học tập.
Cho tam giác ABC có các đường cao BE, CF cắt nhau tại H. Gọi M là trung điểm của BC và I là trung điểm của AH. Chứng minh rằng: a) Tứ giác AEHF nội tiếp đường tròn tâm I; b) ME, MF tiếp xúc với đường tròn ngoại tiếp tứ giác AEHF.
Đề bài
Cho tam giác ABC có các đường cao BE, CF cắt nhau tại H. Gọi M là trung điểm của BC và I là trung điểm của AH. Chứng minh rằng:
a) Tứ giác AEHF nội tiếp đường tròn tâm I;
b) ME, MF tiếp xúc với đường tròn ngoại tiếp tứ giác AEHF.
Video hướng dẫn giải
Phương pháp giải - Xem chi tiết
a) + Chứng minh \(\widehat {AEH} = \widehat {AFH} = {90^o}\) nên tam giác AEH vuông tại E, tam giác AHF vuông tại F.
+ Suy ra, tứ giác AEHF nội tiếp đường tròn tâm I.
b) Chứng minh \(\widehat {IEA} = \widehat {EBC}\), \(\widehat {MCE} = \widehat {MEC}\), \(\widehat {ECB} + \widehat {EBC} = {90^o}\) nên \(\widehat {MEC} + \widehat {IEA} = {90^o}\).
+ Tính được \(\widehat {IEM} = {90^o}\) nên \(IE \bot ME\) tại M, nên ME tiếp xúc với đường tròn ngoại tiếp tứ giác AEHF.
+ Chứng minh tương tự ta có: MF tiếp xúc với đường tròn ngoại tiếp tứ giác AEHF.
Lời giải chi tiết
a) Vì BE, CF là đường cao của \(\Delta \)ABC nên \(BE \bot AC,CF \bot AB\)\( \Rightarrow \widehat {AEH} = \widehat {AFH} = \widehat {BFC} = \widehat {BEC} = {90^o}\)
Do đó, tam giác AFH vuông tại F và tam giác AEH vuông tại E.
Suy ra, bốn điểm A, E, H, F cùng thuộc đường tròn đường kính AH.
Mà I là trung điểm của AH nên tứ giác AEHF nội tiếp đường tròn tâm I.
b) Vì tứ giác AEHF nội tiếp đường tròn tâm I nên \(IA = IE\). Do đó, \(\Delta \)IAE cân tại I nên \(\widehat {IAE} = \widehat {IEA}\).
Lại có: \(\widehat {EAI} = \widehat {EBC}\) (cùng phụ với góc ACB) nên \(\widehat {IEA} = \widehat {EBC}\) (1)
\(\Delta \)BEC vuông tại E, EM là đường trung tuyến nên \(EM = MC\). Do đó, \(\Delta \)MEC cân tại M.
Suy ra, \(\widehat {MCE} = \widehat {MEC}\) (2)
\(\Delta \)BEC vuông tại E nên \(\widehat {ECB} + \widehat {EBC} = {90^o}\) (3)
Từ (1), (2) và (3) ta có: \(\widehat {MEC} + \widehat {IEA} = {90^o}\).
Mà \(\widehat {MEC} + \widehat {IEA} + \widehat {IEH} + \widehat {HEM} = {180^o} \Rightarrow \widehat {IEM} = {90^o}\). Do đó, \(IE \bot ME\) tại M. Mà E thuộc đường tròn ngoại tiếp tứ giác AEHF nên ME tiếp xúc với đường tròn ngoại tiếp tứ giác AEHF.
Chứng minh tương tự ta có: MF tiếp xúc với đường tròn ngoại tiếp tứ giác AEHF.
Bài tập 9.40 trang 92 SGK Toán 9 tập 2 - Kết nối tri thức yêu cầu chúng ta xét hàm số bậc hai và tìm hiểu các đặc điểm của nó. Để giải bài tập này một cách hiệu quả, chúng ta cần nắm vững các kiến thức cơ bản về hàm số bậc hai, bao gồm:
Phân tích bài toán 9.40:
Để giải bài tập 9.40, chúng ta cần đọc kỹ đề bài và xác định yêu cầu cụ thể. Thông thường, bài toán sẽ yêu cầu chúng ta:
Lời giải chi tiết bài tập 9.40:
(Ở đây sẽ là lời giải chi tiết của bài tập 9.40, bao gồm các bước giải, công thức sử dụng và kết quả cuối cùng. Lời giải sẽ được trình bày một cách rõ ràng, dễ hiểu, có thể kèm theo hình ảnh minh họa nếu cần thiết.)
Ví dụ minh họa:
Giả sử hàm số được cho là y = x2 - 4x + 3. Chúng ta sẽ tiến hành giải bài tập theo các bước sau:
Lưu ý khi giải bài tập:
Bài tập tương tự:
Để củng cố kiến thức, các em có thể tự giải các bài tập tương tự trong SGK Toán 9 tập 2 - Kết nối tri thức hoặc các đề thi thử Toán 9.
Kết luận:
Bài tập 9.40 trang 92 SGK Toán 9 tập 2 - Kết nối tri thức là một bài toán quan trọng giúp học sinh rèn luyện kỹ năng về hàm số bậc hai. Hy vọng với lời giải chi tiết và hướng dẫn cụ thể trên đây, các em học sinh sẽ tự tin hơn trong quá trình học tập và đạt kết quả tốt trong môn Toán.
Giaitoan.edu.vn luôn đồng hành cùng các em trên con đường chinh phục kiến thức Toán học. Chúc các em học tập tốt!